В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 2√3). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
2√3 = √а
(2√3)² = (√а)²
4*3 = а
а=12;
b) Если х∈[0; 16], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√16=4;
При х∈ [0; 16] у∈ [0; 4].
с) y∈ [13; 21]. Найдите значение аргумента.
13 = √х
(13)² = (√х)²
х=169;
21 = √х
(21)² = (√х)²
х=441;
При х∈ [169; 441] y∈ [13; 21].
d) Найдите при каких х выполняется неравенство у ≤ 2.
√х <= 2
(√х)² <= (2)²
х <= 4;
Неравенство у ≤ 2 выполняется при х <= 4.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 2√3). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
2√3 = √а
(2√3)² = (√а)²
4*3 = а
а=12;
b) Если х∈[0; 16], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√16=4;
При х∈ [0; 16] у∈ [0; 4].
с) y∈ [13; 21]. Найдите значение аргумента.
13 = √х
(13)² = (√х)²
х=169;
21 = √х
(21)² = (√х)²
х=441;
При х∈ [169; 441] y∈ [13; 21].
d) Найдите при каких х выполняется неравенство у ≤ 2.
√х <= 2
(√х)² <= (2)²
х <= 4;
Неравенство у ≤ 2 выполняется при х <= 4.
0,2x·(1 + 0,2x·(8x - 3)) = 0,4x²·(4x - 5)
0,2x·(1 + 0,2x·(8x - 3)) - 0,4x²·(4x - 5) = 0
0,2x·(1 + 1,6x² - 0,6x) - 0,2x·2x·(4x - 5)=0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 - 6,4x² + 9,4x) = 0
x=0 или 6,4х² - 9,4х - 1 = 0
64х² - 94 х - 10 = 0
D=94²+4·64·10=8836+2560=11396
x=(94-√11396)/128 >0 или х=(94+√11396)/128 >0
x=0 - меньший корень уравнения