Решение: 1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим:
-10 мы значение не берем по смыслу. Значит, x=10. Тогда 3х = 3*10 = 30(мм) 4х = 4*10 = 40(мм). 2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок:
a - катет с - гипотенуза a с индексом с - отрезок.
А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм). ответ: 18 и 32 мм
По теореме Виета можно найти корни квадр. ур-ия.В 1-ом уравнении корни х=2 или х=4. Наибольший корень х=4. Во втором уравнении сначала надо разделить его на 2, получим такое же уравнение, как и в 1-ом примере.То есть наибольший корень(решение) х=4. В третьем равенстве, решениями будут числа (-2) или (-5).Большее из них х=-2. А меньшее х=-5. Корни также можно находить через дискриминант D=b^2-4ac. 1) D=36-4*8=36-32=4, x_1=(6-2)/2=2 , x_2=(6+2)/2=4 2) Аналогично 3) D=49-40=9, x_1=(-7-3)/2=-5, x_2=(-7+3)/2=-2
1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим:
-10 мы значение не берем по смыслу. Значит, x=10.
Тогда 3х = 3*10 = 30(мм)
4х = 4*10 = 40(мм).
2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок:
a - катет
с - гипотенуза
a с индексом с - отрезок.
А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм).
ответ: 18 и 32 мм
Во втором уравнении сначала надо разделить его на 2, получим такое же уравнение, как и в 1-ом примере.То есть наибольший корень(решение) х=4.
В третьем равенстве, решениями будут числа (-2) или (-5).Большее из них х=-2. А меньшее х=-5.
Корни также можно находить через дискриминант D=b^2-4ac.
1) D=36-4*8=36-32=4, x_1=(6-2)/2=2 , x_2=(6+2)/2=4
2) Аналогично
3) D=49-40=9, x_1=(-7-3)/2=-5, x_2=(-7+3)/2=-2