Примем скорость товарного поезда за х, тогда скорость пассажирского х+20. Время, которое затратит товарный поезд на прохождение 700 км, составит 700/х, соответственно пассажирскому поезду для этого понадобится времени 700/(х+20). Зная, что время, затраченное пассажирским поездом на прохождение 700 км на 4 часа меньше, чем это требуется товарному поезду, составим и решим уравнение: 700/х - 700/(х+20)=4 700(х+20) - 700х=4х(х+20) 700х+14000-700х=4х^2+80х 4х^2 + 80х - 14000=0 х^2 +20х-3500=0 D=400-4(-3500)=14400 х1=(-20+√14400)/2=50 х2=(-20-√14400)/2=-70 х2 не подходит по условиям задачи, так как скорость не может иметь отрицательное значение. ответ: 50 км/ч
Время, которое затратит товарный поезд на прохождение 700 км, составит 700/х, соответственно пассажирскому поезду для этого понадобится времени 700/(х+20).
Зная, что время, затраченное пассажирским поездом на прохождение 700 км на 4 часа меньше, чем это требуется товарному поезду, составим и решим уравнение:
700/х - 700/(х+20)=4
700(х+20) - 700х=4х(х+20)
700х+14000-700х=4х^2+80х
4х^2 + 80х - 14000=0
х^2 +20х-3500=0
D=400-4(-3500)=14400
х1=(-20+√14400)/2=50
х2=(-20-√14400)/2=-70
х2 не подходит по условиям задачи, так как скорость не может иметь отрицательное значение.
ответ: 50 км/ч
Точки A(10; - 5) ; B(-2 ; 1) являются концами диаметра окружности.
1)Находим координаты точки O(xo;yo) - центра окружности
O(( 10 - 2)/2; ( - 5 + 1)/2)
O( 4; - 2)
2)Находим координаты вектора АВ:
AB={-2-10);1-(-5)) = ( - 12; 6)
3 )Находим диаметр окружности. Это длина отрезка АВ:
d = |AB| = √((-12)² + 6²)) = √(144 +36 ) = √180 = 6√5
4) Находим радиус окружности:
R = d/2 =( 6√5) / 2 = 3√5
5)Составим уравнение окружности:
(x - xo)² + (y - yo)² = R²
(x - 4)² + (y - (-2))² = (3√5)²
(x - 4)² + (y + 2)² = 45