при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины AB и AC: используем формулу:
находим координаты точки K:
теперь определим вид треугольника для этого используем теорему косинусов: для начала найдем длину BC:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
подставим значения:
cosB<0 поэтому угол тупой и треугольник тупоугольный ответ: треугольник тупоугольный
Разложим синус и косинус удвоенных аргументов по формулам:
sin2A = 2sinAcosA
cos2a = cos²A - sin²A
sin²x - 2(cos²x - sin²x) = 2sinxcosx
sin²x - 2cos²x + 2sin²x - 2sinxcosx = 0
3sin²x - 2sinxcosx - 2cos²x = 0 |:cos²x
3tg²x - 2tgx - 2 = 0
Пусть t = tgx.
3t² - 2t - 2 = 0
D = 4 + 2·4·3 = 28 = ( 2√7)²
t₁ = (2 + 2√7)/6 = (1 + √7)/3
t₂ = (2 - 2√7)/6 = (1 - √7)/3
Обратная замена:
tgx = (1 + √7)/3
x = arctg[(1 + √7)/3] + πn, n ∈ Z
tgx = (1 - √7)/3
x = arctg[(1 - √7)/3] + πn, n ∈ Z
ответ: x = arctg[(1 + √7)/3] + πn, n ∈ Z; arctg[(1 - √7)/3] + πn, n ∈ Z.
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины AB и AC:
используем формулу:
находим координаты точки K:
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
подставим значения:
cosB<0 поэтому угол тупой и треугольник тупоугольный
ответ: треугольник тупоугольный