Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
(x^2)^2-2*x^2*8+8^2+2+3.5x^2-28-2=0
x^4-16x^2+64+2+3.5x^2-30=0
x^4-12.5x^2+36=0
t=x^2
t^2-12.5t+36=0
D=(-12.5)^2-4*1*36=156.25-144=12.25
t1=12.5+3.5/2=16/2=8
t2=12.5-3.5/2=9/2=4.5
x^2=8 x^2=4.5
x1= x3= корень из 4.5
x2=- x4= минус корень из 4.5
2. (1+x^2)^2+0,5*(1+x^2)-5=0
1^2+2*1*x^2+(x^2)^2+0.5+0.5x^2-5=0
1+2x^2+x^4+0.5+0.5x^2-5=0
x^4+2.5x^2-3.5=0
t=x^2
t^2+2.5t-3.5=0
D=(2.5)^2-4*1*(-3.5)=6.25+14=20.25
t1=-2.5+4.5/2=1
t2=-2.5-4.5/2=-3.5
x=корень из 1 x= корень из - 3.5
x1=1
x2=-1