Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
2
3
2x³-3x²-11x+6 |x-3
2x³-6x² 2x^2+3x-2
---------------
3x²-11x
3x²-9x
-----------------
-2x+6
-2x+6
---------------
0
x=-2 2*4+3*(-2)-2=8-6-2=0
4
15^9 оканчивается на 5
26^9 оканчивается на 6
39^9
в 1 оканчивается на 9
во 2 оканчивается на 1
в 3 оканчивается на 9
.............................................
в 9 оканчивается на 9 (в нечетной степени)
5+6+9=20,значит оканчивается на 0
5
99^9 оканчивается на 9, значит (99^99)^9 оканчивается на 9 (см 4)
6
x^4+6x³+3x²+ax+b |x²+4x+3
x^4+4x³+3x² x²+2x-8
----------------------
2x³+ +ax
2x²+8x²+6x
----------------------------
-8x²+(a-6)x+b
-8x²-32x-24
-----------------------------
0
a-6=-32⇒a=-32+6=-26
b=-24