Второе слагаемое 5 неизменно, поэтому наибольшего значения вся сумма достигнет тогда, когда наибольшим будет первое слагаемое - (3х - 2)².
(3х - 2)² ≥ 0 при любом действительном значении х, тогда
- (3х - 2)² ≤ 0, а значит наибольшим его значением является 0.
Получили, что в этом случае сумма будет равной 0 + 5 = 5, и это и есть наибольшее значение многочлена 1+12x-9x².
Рассмотрим функцию у = 1+12x-9x².
Она квадратичная, графиком является парабола. Так как а = - 9, а < 0, то ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы.
ОДЗ :
1) 2x² + x + 6 ≥ 0
2x² + x + 6 = 0
D = 1² - 4 * 2 * 6 = 1 - 48 = - 47 < 0
Дискриминант квадратного трёхчлена меньше нуля старший коэффициент равен 2 > 0 , значит 2x² + x + 6 > 0 при любых действительных значениях x .
2) 2x² + x - 1 ≥ 0
2x² + x - 1 = 0
D = 1² - 4 * 2 * (- 1) = 1 + 8 = 9 = 3²
x₁ = (- 1 - 3)/2 = - 2
x₂ = ( - 1 + 3)/2 = 1
2x² + x - 1 = 2(x + 2)(x - 1)
2(x + 2)(x - 1) ≥ 0
(x + 2)(x - 1) ≥ 0
+ - +
[- 2][1]
ОДЗ : x ∈ (- ∞ ; - 2] ∪ [1 ; + ∞)
наибольшее значение многочлена равно 5.
Объяснение:
- 9х² + 12х + 1
- (9х² - 12х - 1) = - ((3х)² - 2·3х·2 + 2² - 5) = -((3х - 2)² - 5) = - (3х - 2)² + 5.
Второе слагаемое 5 неизменно, поэтому наибольшего значения вся сумма достигнет тогда, когда наибольшим будет первое слагаемое - (3х - 2)².
(3х - 2)² ≥ 0 при любом действительном значении х, тогда
- (3х - 2)² ≤ 0, а значит наибольшим его значением является 0.
Получили, что в этом случае сумма будет равной 0 + 5 = 5, и это и есть наибольшее значение многочлена 1+12x-9x².
Рассмотрим функцию у = 1+12x-9x².
Она квадратичная, графиком является парабола. Так как а = - 9, а < 0, то ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы.
х вершины = -b/(2a) = -12/(-18) = 2/3.
у вершины = 1 + 12·2/3 - 9·4/9 = 1 + 8 - 4 = 5.