Потрібно знайти суму чисел: 10 + 15 + 20 + ... + 95.
Цей ряд чисел утворює арифметичну прогресію, тобто послідовність чисел, кожен член якої, починаючи з 2-го, дорівнює попередньому, складеному з одним і тим же числом, званим різницею прогресії - це число 5.
Маємо: а₁ = 10, різниця d = 5.
Знайдемо номер останнього члена прогресії, рівного 95:
an = a₁₁ + d (n - 1) - формула n-го члена
95 = 10 + 5 (n - 1),
10 + 5n - 5 = 95,
5 + 5n = 95,
5n = 95 - 5,
5n = 90,
n = 90: 5,
n = 18.
Значить, все двозначних чисел, кратних числу 5, - 18 штук.
Знайдемо S₁₈.
Sn = (a₁ + a₁₈) / 2 · n - формула суми n перших членів арифметичної прогресії
если коэффициенты действительно такие, то это уравнение решается лишь за формулами Кардано (на подобие формул корней квадратного уравнения, только для уравнения 4-го степени). И тут не применишь и метод неопределенных коэффициентов (ax^2+bx+c)(dx^2+ex+f)=5x^4-12x^3+11x^2-12x+5, так как коэффициенты b,c,e,f - иррациональны. Формулы Кардано в обычном курсе алгебры в школе не изучают, в углубленном курсе кажется так же не изучают. Прикрепляю скрин
, , , , ,
два случая: 1)
2)
ответ: 1 и 5 ------------------------------
- парабола ветками вверх, нам нужен случай, когда вершина параболы лежит на оси ОХ, т.е. когда парабола пересекает эту ось в одной точке. И это будет тогда и только тогда, когда дискриминант обращается в нуль:
Потрібно знайти суму чисел: 10 + 15 + 20 + ... + 95.
Цей ряд чисел утворює арифметичну прогресію, тобто послідовність чисел, кожен член якої, починаючи з 2-го, дорівнює попередньому, складеному з одним і тим же числом, званим різницею прогресії - це число 5.
Маємо: а₁ = 10, різниця d = 5.
Знайдемо номер останнього члена прогресії, рівного 95:
an = a₁₁ + d (n - 1) - формула n-го члена
95 = 10 + 5 (n - 1),
10 + 5n - 5 = 95,
5 + 5n = 95,
5n = 95 - 5,
5n = 90,
n = 90: 5,
n = 18.
Значить, все двозначних чисел, кратних числу 5, - 18 штук.
Знайдемо S₁₈.
Sn = (a₁ + a₁₈) / 2 · n - формула суми n перших членів арифметичної прогресії
S₁₈ = (10 + 95) / 2 · 18 = 105 · 9 = 945.
Відповідь: 945.
ответ: 1
--------------------------------------
если коэффициенты действительно такие, то это уравнение решается лишь за формулами Кардано (на подобие формул корней квадратного уравнения, только для уравнения 4-го степени).
И тут не применишь и метод неопределенных коэффициентов (ax^2+bx+c)(dx^2+ex+f)=5x^4-12x^3+11x^2-12x+5, так как коэффициенты b,c,e,f - иррациональны.
Формулы Кардано в обычном курсе алгебры в школе не изучают, в углубленном курсе кажется так же не изучают.
Прикрепляю скрин
,
,
,
,
,
два случая:
1)
2)
ответ: 1 и 5
------------------------------
- парабола ветками вверх, нам нужен случай, когда вершина параболы лежит на оси ОХ, т.е. когда парабола пересекает эту ось в одной точке.
И это будет тогда и только тогда, когда дискриминант обращается в нуль:
Получили, что это случается если
ответ: 4; 12.