Только при значении а = 1 функция x^2+3*x+0.01 имеет минимум -2,24. Точка пересечения графика функции с осью координат Y: График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2+3*x+0.01. Результат: y=0.01. Точка: (0, 0.01) Точки пересечения графика функции с осью координат X: График функции пересекает ось X при y=0, значит нам надо решить уравнение: x^2+3*x+0.01 = 0 Решаем это уравнение и его корни будут точками пересечения с X: x=-2.99666295470958. Точка: (-2.99666295470958, 0)x=-0.00333704529042345. Точка: (-0.00333704529042345, 0) Экстремумы функции: Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: y'=2*x + 3=0 Решаем это уравнение и его корни будут экстремумами: x=-3/2. Точка: (-3/2, -2.24)
Точка пересечения графика функции с осью координат Y: График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2+3*x+0.01.
Результат: y=0.01. Точка: (0, 0.01)
Точки пересечения графика функции с осью координат X: График функции пересекает ось X при y=0, значит нам надо решить уравнение: x^2+3*x+0.01 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=-2.99666295470958. Точка: (-2.99666295470958, 0)x=-0.00333704529042345. Точка: (-0.00333704529042345, 0) Экстремумы функции: Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: y'=2*x + 3=0
Решаем это уравнение и его корни будут экстремумами: x=-3/2. Точка: (-3/2, -2.24)
Условие: BA║DE, ∠CBA = 140°, ∠CDE = 130°. Доказать, что BC⊥CD.
Дано: BA║DE, ∠CBA = 140°, ∠CDE = 130°.
Доказать: BC⊥CD.
Доказательство:
Проведем из точки С прямую CF, параллельную прямым BA и DE.
∠CBA и ∠BCF - односторонние углы при BA║CF и секущей ВС.∠DCF и ∠CDE - односторонние углы при CF║DE и секущей CD.Сумма односторонних углов при параллельных прямых и секущей равна 180° ⇒
∠CBA + ∠BCF = 180°
∠DCF + ∠CDE = 180°
∠BCF = 180° - ∠CBA = 180° - 140° = 40°∠DCF = 180° - ∠CDE = 180° - 130° = 50°∠BCD = ∠BCF + ∠DCF = 40° + 50° = 90°
Значит, BC⊥CD, что и требовалось доказать.