1. Январь: А₁=106 Декабрь: А₁₂ - ? d=3 S₁₂-? A₁₂=A₁+3*11=106+33=139 (шт) - изготовили в декабре S₁₂=(A₁+A₁₂) * 12 =6*(106+139)=6*245=1470 (шт) - изготовили за год. 2 ответ: 139 шт, 1470 шт.
2. Аn=2*3^n A₁=2*3¹=6 A₂=2*3²=2*9=18 A₃=2*3³=2*27=54 В геометрической прогрессии квадрат каждого члена, отличного от первого и последнего, равен произведению соседних с ним членов: А₂²=А₁ * А₃ 18²=6*54 324=324 Условие выполняется, значит заданная последовательность есть геометрическая последовательность.
2) приравниваем её к 0 и решаем уравнение;
3) смотрим, какие корни попали в указанный промежуток и ищем значения функции в этих точках и на концах промежутка;
4) пишем ответ.
Поехали?
1) у' = 3x^2 +2x -8
2) 3x^2 +2x -8 = 0
x1= -2 ( входит в промежуток) x2 = 4/3 (не входит в промежуток)
3)у(-3) = (-3)^3 + (-3)^2 -8*(-3) -8 = -27 +9 +24 -8 = -2
y(0) = 0^3 +0^2 -8*0 -8 = -8
y(-2) = (-2)^3 +(-2)^2 -8*(-2) -8 = -8 +4 +16 -8 = 4
4) ответ: max y = y(-2) = 4
Декабрь: А₁₂ - ?
d=3
S₁₂-?
A₁₂=A₁+3*11=106+33=139 (шт) - изготовили в декабре
S₁₂=(A₁+A₁₂) * 12 =6*(106+139)=6*245=1470 (шт) - изготовили за год.
2
ответ: 139 шт, 1470 шт.
2. Аn=2*3^n
A₁=2*3¹=6
A₂=2*3²=2*9=18
A₃=2*3³=2*27=54
В геометрической прогрессии квадрат каждого члена, отличного от первого и последнего, равен произведению соседних с ним членов:
А₂²=А₁ * А₃
18²=6*54
324=324
Условие выполняется, значит заданная последовательность есть геометрическая последовательность.