В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Shkolnik98rus
Shkolnik98rus
13.04.2021 20:06 •  Алгебра

Известно, что p и p^2+2 - простые. докажите, что число p^3+2 также является простым

Показать ответ
Ответ:
JukovaEleonora
JukovaEleonora
11.06.2020 16:06

Число р при делении на 3 может давать остатки 0,1 или 2.

 

Если число р при делении на 3 дает остаток 1, то оно имеет вид

p=3k+1, где k - некоторое целое число

Но тогда p^2+2=(3k+1)^2+2=9k^2+6k+1+2=9k^2+6k+3=3*(3k^2+2k+1), а значит число p^2+2 не является простым. Значит такой случай невозможен

 

 

Если число р при делении на 3 дает остаток 2, то оно имеет вид

p=3k+2, где k - некоторое целое число

Но тогда p^2+2=(3k+2)^2+2=9k^2+6k+4+2=9k^2+6k+6=3*(3k^2+2k+2), а значит число p^2+2 не является простым. Значит такой случай невозможен

 

Значит число р при делении на 3 дает остаток 0, а значит число р делится нацело на 3. Число р делится нацело на 3 и является простым, значит число р может равняться только числу 3.

 

При р=3: p^3+2=3^3+2=27+2=29 - простое, что и требовалось доказать.Доказано

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота