Известно, что при затоваривании рынка определенным видом товара, реализовать его можно только с дисконтом (со скидкой). Фирма производит алюминиевые тазы для бани. Известно, что она сможет реализовать x тазов в неделю по цене (2000-0,05x) рублей за штуку, а себестоимость производства одного таза равна 700 рублям.
Определите наибольшую недельную прибыль, которую может получить предприятие. По какой цене тогда нужно продавать тазы? Недельная прибыль – это разница между доходами и расходами фирмы за 1 неделю.
Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью O, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох.
Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.
Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1
Если а² = b², то обязательно a = плюс-минус b (прости, я не нашла значка плюс-минус). Т.е. мы можем утверждать, что
x² = x - 2 или x² = 2 - x.
Решим оба уравнения.
x² = x - 2
x² - x + 2 = 0
D = (-1)² - 4·1·2 = 1 - 8 = -7. Так как дискриминант отрицательный, действительных решений уравнение не имеет.
Теперь решаем второе уравнение:
x² = 2 - x
x² + x - 2 = 0
D = 1² - 4·1·(-2) = 1 + 8 = 9. Дискриминант положительный, т.е. уравнение имеет два корня:
x = (-1 плюс-минус √D) / 2·1 = 1/2 · (-1 плюс-минус 3)
= 1/2 · (-1 + 3) = 1/2 · 2 = 1
= 1/2 · (-1 - 3) = 1/2 · (-4) = -2
проверка:
1 = (1 - 2)²
1 = (-1)²
1 = 1
(-2) = (-2- 2)²
16 = (-4)²
16 = 16