Известны координаты двух противоположных вершин квадрата (вершины перечислены против часовой стрелки): (6; −6) и (−6; 6). Определи координаты двух других вершин. Сколько решений имеет задача?
Подробное объяснение: в задании номер 1 число 3 в 4 степени возводится в 5 степень. Когда ты видишь что-то наподобие этого, то степени перемножаются: то есть 4 степень умножаем на 5 степень и получаем 20 степень, то есть 3 в 20 степени. Далее, в числителе, видим:
Здесь степени тоже умножаюся, потому что умножаются сами числа. Перемножаем и получаем 3 в 23 степени. Ну и затем остается сократить то, что получилось:
Сокращаем и получаем:
Задание номер 2.
Ну, тут все просто, тут надо правильно перемножить, как на фото. С умножением степеней ситуация та же, что и в 1 задании.
Подробное объяснение: в задании номер 1 число 3 в 4 степени возводится в 5 степень. Когда ты видишь что-то наподобие этого, то степени перемножаются: то есть 4 степень умножаем на 5 степень и получаем 20 степень, то есть 3 в 20 степени. Далее, в числителе, видим:
Здесь степени тоже умножаюся, потому что умножаются сами числа. Перемножаем и получаем 3 в 23 степени. Ну и затем остается сократить то, что получилось:
Сокращаем и получаем:
Задание номер 2.
Ну, тут все просто, тут надо правильно перемножить, как на фото. С умножением степеней ситуация та же, что и в 1 задании.
Надеюсь
1. Область определения функции — множество всех действительных чисел.
2. Множество значений функции:
Так как синус изменяется от -1 до 1, то оценивая в виде двойного неравенства, имеем
Множество значений функции y=-2sinx: отрезок [-2;2].
3. Функция периодическая с периодом T = 2π
4. Функция нечетная , так как y(-x) = 2sin x = -y(x)
5. Наибольшее значение, равное 2, при
Наименьшее значение, равное -2, при
6. Функция возрастает на отрезке и на отрезках, получаемых сдвигами этого отрезка на
убывает на отрезке и на отрезках, получаемых сдвигами этого отрезка на