Смотрите рисунок. Начнем с того, что раз треугольник остроугольный,то все высоты находятся внутри треугольника,то внутри расположен и сам ортоцентр. Пусть R центр вписанной окружности,тогда он есть пересечение биссектрис. То есть AR и CR биссектрисы углов C и A. Пусть разбитые ими углы равны Альфа и Бетта. А угол B=x. Q-ортоцентр ,то есть AF и CS высоты к сторонам BC и AB.По условию выходит что четырехугольник AQRC вписан в окружность,значит углы: QAR=QCR,как углы опирающиеся на общую дугу QR. Из рисунка видно что: QAR= Бетта -(90-x). CQR=Альфа-(90-2*Бетта). Откуда: Бетта+x=Альфа +2*Бетта x=Aльфа+Бетта. Из того что сумма углов треугольника ABC равна 180 имеем: x+2*Альфа+2*Бетта=180 3x=180 x=60. ответ: x=60
2x^2+9x-5=0
D=b^2-4ac=9^2-4*2(-5)=81+40=121 -корень-11
x1,2= -b+\-корень из D / 2a= -9+\-11 / 4= -5 ; 0,5
(х+3)(5х-3)=05x^2+12x-9=0
D=k^2-ac=6^2-5*(-9)=36+45=81 -корень-9
x1,2= -k+\-корень из D / a= -6+\-9 / 5= -3 ; 0,6
(4у-3)(5-8у) =0-32y^2+44y-15=0 | *(-1) __ 32y^2-44y+15=0
D=k^2-ac=(-22)^2-32*15=484-480=4 -корень-2
x1,2= -k+\-корень из D / a= 22+\-2 / 32= 0,625 ; 0,75
(6а+5)(а-8)=06a^2-43a-40=0
D=b^2-4ac=(-43)^2-4*6(-40)=1849+960=2809 -корень-53
x1,2= -b+\-корень из D / 2a=43+\-53 / 12= -5\6 ; 8