Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
daklochkov
26.10.2022 05:01 •
Алгебра
К 20 кг 12%-ного раствора соли добавили 3 кг соли. Сколько надо долить воды, чтобы концентрация соли в растворе не изменилась?
Показать ответ
Ответ:
Бикулова
29.10.2020 11:51
36a^4 - 25 = (6a^2)^2 - 5^2 = (6a^2 - 5)(6a^2 + 5)
216x^3 - 1 = (6x)^3 - 1^3 = (6x-1)(36x^2+6x+1)
100b^2 - 140bx^2 + 49x^4 = (10b - 7x^2)^2=(10b-7x^2)(10b-7x^2)
125b^3 + 27 = (5b + 3)(25b^2 - 15b + 9)
(5a - 1/5)^2 = 25a^2 - 2a + 1/25)
(3a - 5b^2)(9a^2 + 15ab^2 + 25b^4) = (3a)^3 - (5b^2)^3 = 27a^3 - 125b^6
(0,8x+ 5)(5 - 0,8x) = (5 + 0,8x)(5 - 0,8x) = 5^2 - (0,8x)^2 = 25 - 0,64x^2
(7x+ 0,4)^2 = 49x^2 + 5,6x + 0,16
(6y + 1)(36y^2 - 6y + 1) = (6y)^3 + 1^3 = 216y^3 + 1
25x^2 + 60xy + 36y^2 = (5x + 6y)^2 = (5x + 6y)(5x + 6y).
0,0
(0 оценок)
Ответ:
gamer2222
08.04.2023 18:08
1) Ряд Тейлора
f(x0) = ln 2
f ' (x) = 1/x; f ' (x0) = 1/2
f '' (x) = -1/x^2 = -x^(-2); f '' (x0) = -1/4
f ''' (x) = -(-2)x^(-3) = 2x^(-3) = 2/x^3; f ''' (x0) = 2/8 = 1/4
f(iv) (x) = 2(-3)x^(-4) = -6x^(-4) = -6/x^4; f(iv) (x0) = -6/16 = -3/8
И так далее
f(x) = f(x0) + f ' (x0)*(x-x0)/1! + f '' (x0)*(x-x0)^2/2! + f ''' (x0)*(x-x0)^3/3! + ... =
= ln 2 + 1/2*(x-2) - 1/4*(x-2)^2/2 + 1/4*(x-2)^3/6 - 3/8*(x-2)^4/24 + ...
f(x) = ln 2 + 1/2*(x-2) - 1/8*(x-2)^2 + 1/24*(x-2)^3 - 1/64*(x-2)^4 + ...
2) Тут не очень понятно, что под корнями в знаменателях
0,0
(0 оценок)
Популярные вопросы: Алгебра
ivanova7nastya1
26.10.2022 05:04
функция дана.а) найти точки экстремума функции и определить тип точки экстремума;б) найти интервалы увеличения и уменьшения функции;в) найти вторую производную функции;г)...
Nezik
11.06.2021 15:29
Постройте график функции и ответьте на вопрос принадлежит ли точка графику игрек равно 2 x - 5 ...
antuarmenskaya
04.04.2022 07:27
Не виконуючи побудови знайдіть нулі функції y = 5x – 10. А 0Б 2В -2 Г -2 та 2...
вап27
18.01.2022 17:20
При каких значениях параметра a функция y=√(a-3)x²+(2a-6)x+5 определена при всех действительных значениях x...
Ника290305
18.01.2022 17:20
2. Найдите значение выражения:...
ЭМИР200720082009
15.09.2022 05:33
Яке з наведених чисел записано в стандартному вигляд А:3,5•10^-9 B:0.7•10^6 C:5•0,14 D:-0,5•10^-1...
Sobennikovoleg
29.06.2021 19:22
решить. Нужно решить оба столбца, кидайте ответы с решение...
ruevtop
02.05.2022 13:52
с этим во очень Установи (не выполняя построения) взаимное расположение графиков линейных функций =10+4 и =4−10....
Belayalbina2512
02.05.2022 13:52
Решите уровнение х^4 + х^2 - 20 = 0...
platonogloblin
24.02.2020 21:19
Знайдіть значення виразу х^2-у^2 якщо: 1) x = 75, 9 = 25; 3) x = 5,89, g = 4,11; 2) x = 10,5, g = 9,5; 4) x = 3,04, g = 1,96....
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
216x^3 - 1 = (6x)^3 - 1^3 = (6x-1)(36x^2+6x+1)
100b^2 - 140bx^2 + 49x^4 = (10b - 7x^2)^2=(10b-7x^2)(10b-7x^2)
125b^3 + 27 = (5b + 3)(25b^2 - 15b + 9)
(5a - 1/5)^2 = 25a^2 - 2a + 1/25)
(3a - 5b^2)(9a^2 + 15ab^2 + 25b^4) = (3a)^3 - (5b^2)^3 = 27a^3 - 125b^6
(0,8x+ 5)(5 - 0,8x) = (5 + 0,8x)(5 - 0,8x) = 5^2 - (0,8x)^2 = 25 - 0,64x^2
(7x+ 0,4)^2 = 49x^2 + 5,6x + 0,16
(6y + 1)(36y^2 - 6y + 1) = (6y)^3 + 1^3 = 216y^3 + 1
25x^2 + 60xy + 36y^2 = (5x + 6y)^2 = (5x + 6y)(5x + 6y).
f(x0) = ln 2
f ' (x) = 1/x; f ' (x0) = 1/2
f '' (x) = -1/x^2 = -x^(-2); f '' (x0) = -1/4
f ''' (x) = -(-2)x^(-3) = 2x^(-3) = 2/x^3; f ''' (x0) = 2/8 = 1/4
f(iv) (x) = 2(-3)x^(-4) = -6x^(-4) = -6/x^4; f(iv) (x0) = -6/16 = -3/8
И так далее
f(x) = f(x0) + f ' (x0)*(x-x0)/1! + f '' (x0)*(x-x0)^2/2! + f ''' (x0)*(x-x0)^3/3! + ... =
= ln 2 + 1/2*(x-2) - 1/4*(x-2)^2/2 + 1/4*(x-2)^3/6 - 3/8*(x-2)^4/24 + ...
f(x) = ln 2 + 1/2*(x-2) - 1/8*(x-2)^2 + 1/24*(x-2)^3 - 1/64*(x-2)^4 + ...
2) Тут не очень понятно, что под корнями в знаменателях