График - парабола ветвями вниз (по коэффициенту-1 при х²), Надо рассчитать значения функции при разных значениях аргумента: х -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 у -48 -35 -24 -15 -8 -3 0 1 0 -3 -8 -15 -24 -35 -48, нанести эти точки на графике и соединить линией. График пересекает ось Y, когда x равняется 0: подставляем x=0 в -x^2+6*x-8. Результат: y=-8. Точка: (0, -8) График функции пересекает ось X при y=0, значит нам надо решить уравнение:-x^2+6*x-8 = 0 Решаем это уравнение и его корни будут точками пересечения с X: x=2. Точка: (2, 0)x=4. Точка: (4, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-2*x + 6=0 Решаем это уравнение и его корни будут экстремумами:x=3. Точка: (3, 1)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумов у функции нетуМаксимумы функции в точках:3Возрастает на промежутках: (-oo, 3]Убывает на промежутках: [3, oo)Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=-2=0 Решаем это уравнение и его корни будут точками, где у графика перегибы: Нет решение уравнения. Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:lim -x^2+6*x-8, x->+oo = -oo, значит горизонтальной асимптоты справа не существуетlim -x^2+6*x-8, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:lim -x^2+6*x-8/x, x->+oo = -oo, значит наклонной асимптоты справа не существуетlim -x^2+6*x-8/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:-x^2+6*x-8 = -x^2 - 6*x - 8 - Нет-x^2+6*x-8 = -(-x^2 - 6*x - 8) - Нетзначит, функция не является ни четной ни нечетной
Надо рассчитать значения функции при разных значениях аргумента:
х -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
у -48 -35 -24 -15 -8 -3 0 1 0 -3 -8 -15 -24 -35 -48,
нанести эти точки на графике и соединить линией.
График пересекает ось Y, когда x равняется 0: подставляем x=0 в -x^2+6*x-8.
Результат: y=-8. Точка: (0, -8)
График функции пересекает ось X при y=0, значит нам надо решить уравнение:-x^2+6*x-8 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=2. Точка: (2, 0)x=4. Точка: (4, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-2*x + 6=0
Решаем это уравнение и его корни будут экстремумами:x=3. Точка: (3, 1)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумов у функции нетуМаксимумы функции в точках:3Возрастает на промежутках: (-oo, 3]Убывает на промежутках: [3, oo)Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=-2=0
Решаем это уравнение и его корни будут точками, где у графика перегибы: Нет решение уравнения. Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:lim -x^2+6*x-8, x->+oo = -oo, значит горизонтальной асимптоты справа не существуетlim -x^2+6*x-8, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:lim -x^2+6*x-8/x, x->+oo = -oo, значит наклонной асимптоты справа не существуетlim -x^2+6*x-8/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:-x^2+6*x-8 = -x^2 - 6*x - 8 - Нет-x^2+6*x-8 = -(-x^2 - 6*x - 8) - Нетзначит, функция не является ни четной ни нечетной
тогда (х+2) км/ч - скорость по течению,
(х-2) км/ч - против течения,
45/(х+2) ч - время по течению,
45/(х - 2) ч - время против течения,
45/(х+2) + 45/(х-2) ч - все время.
По условию - это 14 часов.
45/(х+2) + 45/(х-2)=14
45(х-2) +45(х+2) = 14(х+2)(х-2) х2 х-2
45х -90 +45х +90 = 14х^2 - 14*4
90х= 14х^2 -56
14х^2 -90х-56=0
7х^2 -45х -28=0
D=45^2 +4*7*28= 2025+ 784 = 2809
х1= (45 +53)/14 = 7 ,
х2 =(45 - 53)/14 =- 8/14 не удовлетворяет условию задачи, т.к. скорость не может быть отрицательной.
72 7-2 верно
ответ: 7 км/ч