Множество целых чисел разделим на три класса: , где + обозначает операцию объединения и изначает, что множества дисъюнктны.
Данное разделение множества целых чисел существует по принципу решета Эрастофена.
. Так как при четном x выражение делится на два, а при нечетном делится на два (сумма нечетных чисел четна), то есть выражение все равно делится на два, первое условие выполнено. Докажем, что x делится на 3: Так как , то рассмотрим три случая: 1) так как . 2) для каких-то , то есть . 3) . для каких-то , то есть . Тогда для всех выражение делится на 6.
количество вариантов будет 24, т. к. это перестановка 4 команд по 4 местам, а это факториал: 4! = 4*3*2 = 24. На первое место будут претендовать 4 команды, на второе уже 3, на третье - 2, а на четвертое - 1. У тебя цифры 3, 5, 7, 9. Т. е. их, получается, 4. В трёхзначных числах цифры могут повторяться (ну оно понятно, система-то позиционная). Юзаем комбинаторный принцип умножения. Цифр четыре, позиций три, значит ответ = 4*4*4 = 64. Раз номер первый нечетный, то последняя должна быть четной т. е. только 314 т. к. 143 первой быть не может. 86 страниц получается. Всего шаров = 2 + 3 = 5 Черных шаров = 2 Вероятность вытащить черный шар = 2/5 Вероятность того, что второй шар будет тоже черным = (2-1)/(5-1) = 1/4, так как один шар уже вытащен. Исходная вероятность равна произведению этих двух вероятностей = 1/4 2/5 = 2/20 = 0.1
, где + обозначает операцию объединения и изначает, что множества дисъюнктны.
Данное разделение множества целых чисел существует по принципу решета Эрастофена.
.
Так как при четном x выражение делится на два, а при нечетном делится на два (сумма нечетных чисел четна), то есть выражение все равно делится на два, первое условие выполнено. Докажем, что x делится на 3:
Так как , то рассмотрим три случая:
1) так как .
2)
для каких-то , то есть .
3) .
для каких-то , то есть .
Тогда для всех выражение делится на 6.
У тебя цифры 3, 5, 7, 9. Т. е. их, получается, 4. В трёхзначных числах цифры могут повторяться (ну оно понятно, система-то позиционная). Юзаем комбинаторный принцип умножения. Цифр четыре, позиций три, значит ответ = 4*4*4 = 64.
Раз номер первый нечетный, то последняя должна быть четной т. е. только 314 т. к. 143 первой быть не может. 86 страниц получается.
Всего шаров = 2 + 3 = 5
Черных шаров = 2
Вероятность вытащить черный шар = 2/5
Вероятность того, что второй шар будет тоже черным = (2-1)/(5-1) = 1/4, так как один шар уже вытащен.
Исходная вероятность равна произведению этих двух вероятностей = 1/4 2/5 = 2/20 = 0.1
x/10 * (x-1)/9 = 2/15
(x^2-x)/90 = 2/15
x^2-x = 12
x^2-x-12 = 0
x = 4