К какому множеству чисел относится результат вычислений: Z Q
N Вопрос №7 ?
Выполните вычисления:
В поле «ответ» необходимо вписать значение в виде числа, без единиц измерения, градусов и тому подобное. Если ответ необходимо записать в виде десятичной дроби, то целую и дробную часть необходимо отделять запятой. Например: 15,5. Если в ответе получено отрицательное число, то в поле «ответ» следует поставить «-», а после него, без пробелов, полученное значение. Например: -15.
ответ
Вопрос №8 ?
Выполните вычисления:
В поле «ответ» необходимо вписать значение в виде числа, без единиц измерения, градусов и тому подобное. Если ответ необходимо записать в виде десятичной дроби, то целую и дробную часть необходимо отделять запятой. Например: 15,5. Если в ответе получено отрицательное число, то в поле «ответ» следует поставить «-», а после него, без пробелов, полученное значение. Например: -15.
51,2:100·х=0,512х - составляют х процентов от числа 51,2 51,2+0,512х - таким стало число после первого повышения (51,2+0,512х):100·х- составляют х процентов от нового числа 51,2+0,512х+(51,2+0,512х):100·х =51,2+0,512х+0,512х+0,00512х²- таким стало число после второго повышения (51,2+0,512х+0,512х+0,00512х²):100·х - составляют х процентов от числа после второго повышения 51,2+0,512х+0,512х+0,00512х²-(51,2+0,512х+0,512х+0,00512х²):100·х =51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³ - таким стало число после первого понижения (51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³):100·х - составляют х процентов от числа после первого понижения 51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³-(51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³):100·х - число после второго понижения, а по условию это 28,8 Упрощаем 51,2+0,512х+0,00512х²-0,01024х-0,0000512х³-0,512х-0,00512х²-0,00512х²-0,0000512х³+0,00512х²+0,0000512х²+0,0000512х²+0,000000512х⁴=28,8 Осталось решить это уравнение
f(x) = 4cos²x - 4cosx + 1, (2cox - 1)^2, с учётом IcosxI ≤ 1 составляем двойное неравенство и решив его, получаем:
min{4cos²x - 4cosx + 1} = 0, при x = - π/3 + 2πn и x π/3 + 2πn
max{4cos²x - 4cosx + 1} = 9, при x = - π + 2πn и x = π + 2πn
E(y) = [0 ; 9]
2) Найти наибольшее значение функции:
y = 4*sin(2*x)+4*(3^(1/2))*cos(2*x)
Находим первую производную функции:
y' = - 8√3*sin(2x) + 8*cos(2x)
Приравниваем ее к нулю:
- 8√3*sin(2x) + 8*cos(2x) = 0
x1 = 1/12π
x2 = -1.31
Вычисляем значения функции
f(1/12π) = 8
f(-1.31) = -3,46
ответ: fmin = -3,46, fmax = 8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = -16sin(2x) - 16√3cos(2x)
Вычисляем:
y''(1/12π) = -32 < 0 - значит точка x = 1/12π точка максимума функции.
y''(-1.31) = 8 > 0 - значит точка x = -1.31 точка минимума функции.
3) Указать множество значений функции:
f(x) = 4cos3x·cos5x - 2cos2x + 11 с учётом IcosxI ≤ 1 составляем двойное неравенство и решив его, получаем:
E(y) = [9;13]
51,2+0,512х - таким стало число после первого повышения
(51,2+0,512х):100·х- составляют х процентов от нового числа
51,2+0,512х+(51,2+0,512х):100·х =51,2+0,512х+0,512х+0,00512х²- таким стало число после второго повышения
(51,2+0,512х+0,512х+0,00512х²):100·х - составляют х процентов от числа после второго повышения
51,2+0,512х+0,512х+0,00512х²-(51,2+0,512х+0,512х+0,00512х²):100·х =51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³
- таким стало число после первого понижения
(51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³):100·х - составляют х процентов от числа после первого понижения
51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³-(51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³):100·х - число после второго понижения, а по условию это 28,8
Упрощаем
51,2+0,512х+0,00512х²-0,01024х-0,0000512х³-0,512х-0,00512х²-0,00512х²-0,0000512х³+0,00512х²+0,0000512х²+0,0000512х²+0,000000512х⁴=28,8
Осталось решить это уравнение