Задача №2. Пусть Х - скорость течения реки, тогда скорость катера по течению равна (8+Х) км/ч, а против течения (8-Х) км/ч. Тогда на путь по течению он затратил 15/(8+Х) ч, а на путь против течения 15/(8-Х) ч.
Т. к. по условию на весь путь туда и обртно затрачено 4 ч, составим уравнение:
Надо помнить, что логарифм отрицательного числа и нуля не существует. Поэтому, чтобы найти область определения, надо решить неравенство:
x^2 - 2x больше нуля.
Корни квадратичной функции 0 и 2. На числовой прямой ставим эти числа. Вся числовая прямая разбилась на интервалы:
(- бесконечность ; 0]; [0; 2]; [ 2 ; + бесконечность)
Надо определить знак нашей квадратичной функции на кадом интервале. Знаки будут такие: +; -; +
ответ: х∈( - бесконечность; 0)∨(2; плюс бесконечность)
Объяснение:
Задача №2. Пусть Х - скорость течения реки, тогда скорость катера по течению равна (8+Х) км/ч, а против течения (8-Х) км/ч. Тогда на путь по течению он затратил 15/(8+Х) ч, а на путь против течения 15/(8-Х) ч.
Т. к. по условию на весь путь туда и обртно затрачено 4 ч, составим уравнение:
15/(8+Х) + 15/(8-Х) = 4 (приводим к общему знаменателю (8+Х) *(8-Х) = 8^2 - Х^2 = 64 - Х^2 )
(120 + 15Х + 120 - 15Х - 4(64 +Х^2) ) /64 - Х^2 = 0
система:
120 + 15Х + 120 - 15Х - 4(64 +Х^2) = 0
64 - Х^2 не равоно 0
Решаем первое ур-ние системы:
240 -256 + 4Х^2 = 0
4Х^2 = 16
Х^2 = 4
Х = 2