Мне кажется, что в условии задачи ошибка. Попытаюсь уточнить условие (дайте знать, правильно ли я понял):
Есть 4 карточки с надписями: делится на 7, простое, нечетное и больше 100. На другой стороне карточек написаны числа 2,5,7,12. Для любой карточки число, написанное на ней, не обладает свойством, написанным на ее обороте. Какое число написано на карточке с надписью делится на 7?
Записываем подходящих кандидатов для каждой карточки:
1) делится на 7: 2, 5, 12
2) простое: 12
3) нечетное: 2, 12
4) больше 100: 2, 5, 7, 12
Для 2-й карточки имеется единственный кандидат: 12. Следовательно, для 3-й карточки имеем: 3) нечетное: 2 (исключаем 12, записанное на 2-й карточке). На 1-й карточке остается число 5 (исключаем 2 и 12). На 4-й карточке остается число 7 (исключаем 2, 5 и 12, записанные на других карточках).
ответ: На обратной стороне карточки с надписью "делится на 7" написано число 5.
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов: 3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры: 4x2 + 15x2 = 19x2 5ab – 1,7ab = 3,3ab 13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов: 2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x 2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу: 2 * 3 = 3 + 3 = 2 + 2 + 2
Мне кажется, что в условии задачи ошибка. Попытаюсь уточнить условие (дайте знать, правильно ли я понял):
Есть 4 карточки с надписями: делится на 7, простое, нечетное и больше 100. На другой стороне карточек написаны числа 2,5,7,12. Для любой карточки число, написанное на ней, не обладает свойством, написанным на ее обороте. Какое число написано на карточке с надписью делится на 7?
Записываем подходящих кандидатов для каждой карточки:
1) делится на 7: 2, 5, 12
2) простое: 12
3) нечетное: 2, 12
4) больше 100: 2, 5, 7, 12
Для 2-й карточки имеется единственный кандидат: 12. Следовательно, для 3-й карточки имеем: 3) нечетное: 2 (исключаем 12, записанное на 2-й карточке). На 1-й карточке остается число 5 (исключаем 2 и 12). На 4-й карточке остается число 7 (исключаем 2, 5 и 12, записанные на других карточках).
ответ: На обратной стороне карточки с надписью "делится на 7" написано число 5.
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2