Арксинус ( y = arcsin x ) – это функция, обратная к синусу ( x = sin y ). Он имеет область определения и множество значений . sin(arcsin x) = x arcsin(sin x) = x
Арксинус иногда обозначают так: .
График функции арксинус График функции y = arcsin x
График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арксинуса.
Арккосинус, arccos
Арккосинус ( y = arccos x ) – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения и множество значений . cos(arccos x) = x arccos(cos x) = x
Арккосинус иногда обозначают так: .
График функции арккосинус График функции y = arccos x
График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккосинуса.
Четность
Функция арксинус является нечетной: arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x
Функция арккосинус не является четной или нечетной: arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x
Свойства - экстремумы, возрастание, убывание
Основные свойства арксинуса и арккосинуса представлены в таблице.
y = arcsin xy = arccos xОбласть определения– 1 ≤ x ≤ 1– 1 ≤ x ≤ 1Область значений Возрастание, убываниемонотонно возрастаетмонотонно убываетМаксимумы Минимумы Нули, y = 0x = 0x = 1Точки пересечения с осью ординат, x = 0y = 0y = π/2Таблица арксинусов и арккосинусов
В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.
Арксинус ( y = arcsin x ) – это функция, обратная к синусу ( x = sin y ). Он имеет область определения и множество значений .
sin(arcsin x) = x
arcsin(sin x) = x
Арксинус иногда обозначают так:
График функции арксинус.
График функции y = arcsin x
График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арксинуса.
Арккосинус, arccosАрккосинус ( y = arccos x ) – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения и множество значений .
cos(arccos x) = x
arccos(cos x) = x
Арккосинус иногда обозначают так:
График функции арккосинус.
График функции y = arccos x
График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккосинуса.
ЧетностьФункция арксинус является нечетной:
arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x
Функция арккосинус не является четной или нечетной:
Свойства - экстремумы, возрастание, убываниеarccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x
Основные свойства арксинуса и арккосинуса представлены в таблице.
y = arcsin xy = arccos xОбласть определения– 1 ≤ x ≤ 1– 1 ≤ x ≤ 1Область значений Возрастание, убываниемонотонно возрастаетмонотонно убываетМаксимумы Минимумы Нули, y = 0x = 0x = 1Точки пересечения с осью ординат, x = 0y = 0y = π/2Таблица арксинусов и арккосинусовВ данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.
xarcsin xarccos xград.рад.град.рад.– 1– 90°– 180°π– – 60°– 150°– – 45°– 135°– – 30°– 120°00°090°30°60°45°45°60°30°190°0°0≈ 0,7071067811865476
ФормулыСм. также:≈ 0,8660254037844386
Вывод формул обратных тригонометрических функций
при или
при и
при и
при или
при и
при и
при
при
при
при
Вывод формул
Выражения через гиперболические функции
Производные;
.
См. Вывод производных арксинуса и арккосинуса > > >
Производные высших порядков:
Интегралы,
где – многочлен степени . Он определяется по формулам:
;
;
.
См. Вывод производных высших порядков арксинуса и арккосинуса > > >
Делаем подстановку x = sin t и интегрируем по частям:
.
Выразим арккосинус через арксинус:
Разложения в ряды.
При |x| < 1 имеет место следующее разложение:
Обратные функции;
.
Обратными к арксинусу и арккосинусу являются синус и косинус, соответственно.
Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x
cos(arccos x) = x .
Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса:
arcsin(sin x) = x при
arccos(cos x) = x при .
|1-|1-x||=0,5значит
1-|1-x|=0,5 или 1-|1-x|=-0,5
разбираем 1-|1-x|=0,5
0,5=|1-x| значит
1-x= 0,5 или 1-x=-0,5 получаем X1= 0,5 и x2 = 1,5
разбираем 1-|1-x|=-0,5
1,5=|1-x|, значит
1-x= 1,5 или 1-х=-1,5 значит x3=-0,5 и x4 = 2,5
Проверям
х1=0,5 |1-|1-x1||=0,5 , |1-|1-0,5||=0,5 , |1-|0,5||=0,5 , |1-0,5|=0,5 , |0,5|=0,5 верно
х2=1,5 |1-|1-x2||=0,5 , |1-|1-1,5||=0,5 , |1-|1,5||=0,5 , |1-1,5|=0,5 , |-0,5|=0,5 верно
х3=-0,5 |1-|1-x3||=0,5 , |1-|1-(-0,5)||=0,5 , |1-|1,5||=0,5 , |1-1,5|=0,5 , |-0,5|=0,5 верно
х4=2,5 |1-|1-x4||=0,5 , |1-|1-2,5||=0,5 , |1-|-1,5||=0,5 , |1-1,5|=0,5 , |-0,5|=0,5 верно
Итого x1+x2+x3+x4=0,5+1,5+(-0,5)+2,5=4