а2 + а4 + а6 = 33
а2*а4*а6 = 935
распишем 1 уравнение:
а1 + d +a1 +3d +a1 +5d = 33
3a1 + 9d = 33
a1 + 3d = 11
выразим а1
a1 = 11 - 3d
распишем 2 уравнение:
(а1 + d)(a1 +3d)(a1 + 5d) = 935
заменим а1:
(11 - 3d +d)(11 - 3d +3d)(11 - 3d +5d) = 935
11(11 - 2d)(11 + 2d) =935
(11 - 2d)(11 +2d) = 85
в скобках формула разности квадратов:
121 - 4d^2 = 85
4d^2 = 36
d^2 = 9
т.к. прогрессия возрастающая, то d = 3
находим первый член:
а1 = 11- 3*3=11-9=2
находим разность:
a6 - a4 - a2=a1 +5d - a1 - 3d -a1 - d=d - a1 = 3 - 2 = 1
произведение:
a1*(a6 - a4 - a2)= 2*1=2
a₂ = 5 + 3 = 8
d = 3
a₁₂ = 5 + 3(12-1) = 5 + 33 = 38
a₃₄ = 5 + 3(34-1) = 5 + 99 = 104
a₁ = 84, d = -5
a₃₇ = 84 - 5(37-1) = -96
a₆₀ = 84 - 5(60-1) = -211
-67; -60; -53...
а₁ = -67
d = 7
S₅₂ = 2a₁ + d(n-1)*n / 2 = 2*(-67) + 7(52-1)*52 / 2 = -134 + 18564 / 2 = 9215
an = 5n - 4
a₁ = 5*1 - 4 = 1
a₂ = 5*2 - 4 = 6
d = 5
S₁₅₀ = 2a₁ + d(n-1)*n / 2 = 2*1 + 5(150-1)*150 / 2 = 2 + 111750 / 2 = 55876
a₁ = 32, а₆₁ = -58
a₆₁ = 32 + d(61-1) = 32 + 60d
-58 = 32 + 60d
60d = -90
d = -1,5
-36 = 32 - 1,5(n-1)
-36 = 32 -1,5n + 1,5
-36 = 33,5 - 1,5n
-69,5 = 1,5n
n = -69,5/1,5 - не является
8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344.
S = 7568
а2 + а4 + а6 = 33
а2*а4*а6 = 935
распишем 1 уравнение:
а1 + d +a1 +3d +a1 +5d = 33
3a1 + 9d = 33
a1 + 3d = 11
выразим а1
a1 = 11 - 3d
распишем 2 уравнение:
(а1 + d)(a1 +3d)(a1 + 5d) = 935
заменим а1:
(11 - 3d +d)(11 - 3d +3d)(11 - 3d +5d) = 935
11(11 - 2d)(11 + 2d) =935
(11 - 2d)(11 +2d) = 85
в скобках формула разности квадратов:
121 - 4d^2 = 85
4d^2 = 36
d^2 = 9
т.к. прогрессия возрастающая, то d = 3
находим первый член:
а1 = 11- 3*3=11-9=2
находим разность:
a6 - a4 - a2=a1 +5d - a1 - 3d -a1 - d=d - a1 = 3 - 2 = 1
произведение:
a1*(a6 - a4 - a2)= 2*1=2