ответ предыдущего пользователя Formik правильный, но возможно кому-то будет проще решать через перестановки, то
1) Можно просто отнять от числа всех возможных перестановок из 10 элементов по 10, то есть , число перестановок, когда 0 стоит на первом месте, то есть .
Имеем:
2) Чтобы понять лучше, почему именно 9!, давайте продемонстрируем это на 4 числах. К примеру, у нас есть числа 0, 1, 2, 3. Нас просят найти сколько таких перестановок может быть, если числа (1) не повторяются и (2) различаются друг от друга порядком их размещения. Мы также помним, что число 0 не может стоять на первом месте. Давайте подумаем как 0 может стоять на первом месте:
0123, 0132, 0231, 0213, 0312, 0321. - Всего 6 перестановок. Но вдумайтесь: мы ищем только те перестановки, КОТОРЫЕ ПОСЛЕ 0, так как 0 стоит на первом месте, мы его не меняем вместе с остальными цифрами! Это нужно понять.
Поэтому, от числа всех перестановок, которые могли бы быть, это 4!, мы должны отнять все те перестановки, когда 0 стоит на первом месте, это 3!, так как меняем мы 3 цифры после 0! И выходит у нас: разместить все цифры так, чтобы 0 не стоял на первом месте! (см. ниже фото)
3) Аналогично делаем когда у нас 10 цифр: мы просто находим перестановки цифр, которые после 0 - это 9!, от числа всех перестановок, которые могли бы быть вообще, если бы не было условия, что 0 не может стоять не первом месте - это 10!
B₃* B₇=28 ⁴/₉=²⁵⁶/₉
q-? S₇-?
B₃=B₁*q²
B₅=B₁*q⁴
B₇=B₁*q⁶
{B₁*q² * B₁*q⁴=⁶⁴/₉ {B₁² * q⁶=⁶⁴/₉
{B₁*q² * B₁*q⁶=²⁵⁶/₉ {B₁² * q⁸=²⁵⁶/₉
B₁²=⁶⁴/₉ : q⁶ =64
9q⁶
64 * q⁸ = 256
9q⁶ 9
64q² =256
9 9
64q²=256
q²=256
64
q²=4
q₁=2
q₂=-2
1) При q=2:
B₁²= 64 = 1
9*2⁶ 9
B₁=¹/₃ или B₁=-¹/₃
B₇=B₁*q⁶
a) При B₁=¹/₃ и q=2 B₇=¹/₃*2⁶=⁶⁴/₃
S₇=B₇q-B₁=⁶⁴/₃ * 2 - ¹/₃ =127 =42 ¹/₃
q-1 2-1 3
б) При B₁=-¹/₃ и q=2 B₇=-¹/₃*2⁶=-⁶⁴/₃
S₇=-⁶⁴/₃ * 2 +¹/₃ =-127 =-42 ¹/₃
2-1 3
2) При q=-2
B₁=¹/₃ или B₁=-¹/₃
a) При B₁=¹/₃ и q=-2:
B₇=¹/₃*(-2)⁶=⁶⁴/₃
S₇=⁶⁴/₃ * (-2) - ¹/₃ =-¹²⁸/₃ - ¹/₃ = -¹²⁹/₃ =129 =14 ³/₉ =14 ¹/₃
-2-1 -3 -3 9
б) При B₁=-¹/₃ и q=-2
B₇=-¹/₃*(-2)⁶=-⁶⁴/₃
S₇=-⁶⁴/₃ * (-2)+¹/₃ =¹²⁸/₃ + ¹/₃ =¹²⁹/₃ =-129 =-14 ¹/₃
-2-1 -3 -3 9
ответ: 1) при B₁=¹/₃ и q=2 S₇=42 ¹/₃;
2) при B₁=-¹/₃ и q=2 S₇=-42 ¹/₃;
3) при B₁=¹/₃ и q=-2 S₇=14 ¹/₃;
4) при B₁=-¹/₃ и q=-2 S₇=-14 ¹/₃
3265920
Объяснение:
ответ предыдущего пользователя Formik правильный, но возможно кому-то будет проще решать через перестановки, то
1) Можно просто отнять от числа всех возможных перестановок из 10 элементов по 10, то есть , число перестановок, когда 0 стоит на первом месте, то есть .
Имеем:
2) Чтобы понять лучше, почему именно 9!, давайте продемонстрируем это на 4 числах. К примеру, у нас есть числа 0, 1, 2, 3. Нас просят найти сколько таких перестановок может быть, если числа (1) не повторяются и (2) различаются друг от друга порядком их размещения. Мы также помним, что число 0 не может стоять на первом месте. Давайте подумаем как 0 может стоять на первом месте:
0123, 0132, 0231, 0213, 0312, 0321. - Всего 6 перестановок. Но вдумайтесь: мы ищем только те перестановки, КОТОРЫЕ ПОСЛЕ 0, так как 0 стоит на первом месте, мы его не меняем вместе с остальными цифрами! Это нужно понять.
Поэтому, от числа всех перестановок, которые могли бы быть, это 4!, мы должны отнять все те перестановки, когда 0 стоит на первом месте, это 3!, так как меняем мы 3 цифры после 0! И выходит у нас: разместить все цифры так, чтобы 0 не стоял на первом месте! (см. ниже фото)
3) Аналогично делаем когда у нас 10 цифр: мы просто находим перестановки цифр, которые после 0 - это 9!, от числа всех перестановок, которые могли бы быть вообще, если бы не было условия, что 0 не может стоять не первом месте - это 10!