1)Найдём абсциссу точки пересечения графиков этих из уравнения
f(x) = g(x)
2 √x = 2√(6-x) - возводим в квадрат обе части
4х = 4(6-x)
4х = 24 - 4х
8х = 24
х = 3
Угол, под которым пересекаются графики - это угол между касательными, проведёнными к линиям в точке их пересечения. Производная функции в данной точке равна угловому коэффициенту касательной, проведённой к графику функции в данной точке, поэтому угол, под которым пересекаются линии, находимм по формуле:
tgα = (k₁ - k₂)/(1 +k₁k₂)
k₁ = f'(x₀), k₂ = g'(x₀)
Сначала найдем значения производных функций в точке х = 3:
Угол между двумя пересекающимися кривыми определяется как угол между двумя прямыми, касательными к кривым в точке их пересечения по формуле tgφ=(k1−k2)/(1+k1k2),
где k1 и k2 — угловые коэффициенты касательных к кривым в точке их пересечения P(x0,y0), т. е. частные значения в точке x0 производных от y по x из уравнений этих кривых: k1=tgα1=(dy1dx)x=x0;k2=tgα2=(dy2dx)x=x0. Находим абсциссу точки пересечения, приравнивая функции. x^2-5x+6 = x^2-2x+5, -3х = -1, х = 1/3. Определяем производные и угловые коэффициенты касательных. y'1 = 2x -5, к1 = 2*(1/3) - 5 = -13/3. y'2 = 2x -2, к2 = 2*(1/3) - 2 = -4/3. tg φ = (-4/3)-(-13/3)/(1+(-13/3)*(-4/3)) = 3/(1+(52/9)) = 0,442623. Угол φ равен arc tg 0,442623 = 0,416702 радиан или 23,87528°.
1)Найдём абсциссу точки пересечения графиков этих из уравнения
f(x) = g(x)
2 √x = 2√(6-x) - возводим в квадрат обе части
4х = 4(6-x)
4х = 24 - 4х
8х = 24
х = 3
Угол, под которым пересекаются графики - это угол между касательными, проведёнными к линиям в точке их пересечения. Производная функции в данной точке равна угловому коэффициенту касательной, проведённой к графику функции в данной точке, поэтому угол, под которым пересекаются линии, находимм по формуле:
tgα = (k₁ - k₂)/(1 +k₁k₂)
k₁ = f'(x₀), k₂ = g'(x₀)
Сначала найдем значения производных функций в точке х = 3:
f'(x) = (2 √x)' = 1/√x k₁ = f'(3) = 1/√3
g'(x) = (2√(6-x))' = - 1/√6-x k₂ = g'(3) = - 1/√6-3 = - 1/√3
Тогда тангенс угла пересечения в точке х = 1 равен
tgα = (1/√3 - (- 1/√3)) / (1 + 1/√3*(- 1/√3)) = 2/√3 / (1 - 1/3) =
= 2/√3 : 2/3 = 2/√3 * 3/2 = √3
=> α = arctg √3 = π/3
ответ: графики функций углом пересекаются углом пересекаются пересекаются под углом π/3.
Угол между двумя пересекающимися кривыми определяется как угол между двумя прямыми, касательными к кривым в точке их пересечения по формуле tgφ=(k1−k2)/(1+k1k2),
где k1 и k2 — угловые коэффициенты касательных к кривым в точке их пересечения P(x0,y0),т. е. частные значения в точке x0 производных от y по x из уравнений этих кривых:
k1=tgα1=(dy1dx)x=x0;k2=tgα2=(dy2dx)x=x0.
Находим абсциссу точки пересечения, приравнивая функции.
x^2-5x+6 = x^2-2x+5, -3х = -1, х = 1/3.
Определяем производные и угловые коэффициенты касательных.
y'1 = 2x -5, к1 = 2*(1/3) - 5 = -13/3.
y'2 = 2x -2, к2 = 2*(1/3) - 2 = -4/3.
tg φ = (-4/3)-(-13/3)/(1+(-13/3)*(-4/3)) = 3/(1+(52/9)) = 0,442623.
Угол φ равен arc tg 0,442623 = 0,416702 радиан или 23,87528°.