Как образуется ОБРАТНАЯ формула разности квадратов??? Изначально это: (a−b)⋅(a+b)=a⋅a+a⋅b−b⋅a−b⋅b==a2+ab−ab−b2=a2−b2 (т. е. (a−b)⋅(a+b)=a2−b2) Но как образовать это формулу обратно (т. е. a2−b2=(a−b)⋅(a+b))? Гм, я немного тупой так что лучше напишите на бумажке полное решение и пришлите по фото.
y=x²-4x+3
y=ax²+bx+c
a=1, b=-4, c=3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)=4/2=2
у(в) = 2²-4*2+3=4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Например Х=0, то У=4*0-30 = -30, то есть линия проходит через точку (0; -30).
Если Х=-2,5 то У=4*(-2,5)-30 = -40, значит линия проходит через точку (-2,5; -40).
Также можно подставить число на место У, тогда -6=4*Х-30, отсюда 4*Х=30-6, далее Х=(30-6)/4 = 6, то есть линия проходит через точку (6; -6).
Чтобы понять проходит линия через точку (7; -3) нужно подставить 7 вместо Х и посмотреть будет ли У равен -3. Попробуйте сами. Если что непонятно, спрашивайте )