Как получить сто из чисел, если можно использовать факториал, отрицательные числа, умножение ,деление, сложение, вычитание, соединения чисел:3 3 3 3=100
Пусть а и б - катеты. Тогда из условия а+б=14. По теореме Пифагора а²+б²=с², где с - гипотенуза. Тогда а²+б²=100. Из этих двух уравнений получаем систему, решая которую, находим катеты а и б:
а+б=14 и а²+б²=100; а=14-б и (14-б)²+б²=100. Далее решаем правое уравнение:
а=1 , b=6 , с=5
D= b²-4ac
D= 36 -4*1*5 =36-20= 16
D>0 два корня уравнения , √D= 4
х₁, х₂ = (-b +- √D) /2a
x₁= (-6-4)/2 =-10/2=-5
x₂= (-6+4)/2 = -2/2=-1
x² -1.8x -3.6 =0
D= (-1.8)² - 4* 1* (-3.6) = 3.24 +14.4 = 17.64
D>0 , √D= 4.2
х₁= (1,8 - 4,2 ) / 2 = 2,4/2=1,2
х₂= (1,8+4,2)/2 = 3
4х²-х-14=0
D= (-1)² -4 *4 *(-14)=1+ 224=225
D>0 , √D= 15
x₁= (1-15)/(2*4)= 14/8= 1.75
x₂= (1+15)/8= 16/8=2
2x²+x-3=0
D= 1 -4*2*(-3) = 1+24=25
D>0 , √D= 5
x₁= (-1-5) /(2*2) = -6/4= -1.5
x₂= (-1+5)/4 =1
2x²-9x=35
2x²-9x-35 =0
D= 81 -4*2*(-35) =81+280=361
D>0 , √D=19
x₁= (9-19)/ (2*2) =-10/4=-2.5
x₂= (9+19)/4 = 28/4=7
а+б=14 и а²+б²=100;
а=14-б и (14-б)²+б²=100. Далее решаем правое уравнение:
196-38б+б²+б²=100;
2б²-38б+96=0;
б²-14б+48=0;
D=(-14)²-4*48=196-192=4; √D=2
б1=(14+2)/2=8 (см)
б2=(14-2)/2=6 (см)
При б1=8 см имеем а1=14-б1=6,
при б2=6 имеем а2=14-б2=8.
То есть, катеты могут быть равны как 8 и 6 см соответственно, так и 6 и 8 см соответственно.
ответ: 8 см и 6 см