Нам задано производную функции f'(x)=2-1/x. Для составления уравнения касательной нужно иметь саму функцию, поэтому f(x)=Int(2-1/x)=2x-ln(x)+C. Значение функции f(1/2)=1+ln2+C (С можно принимать какое угодно число, примем С=0). Значение производной f'(1/2)=0. Тогда уравнение касательной запишется: y-(1+ln2)=0(x-1/2), y=1+ln2-уравнение касательной. Если принять С=1, то уравнение касательной будет иметь вид y=2+ln2. Но тогда и функция будет иметь вид f(x)=2x-ln(x)+1. И т.д. Даю примеры графиков этих функций и касательных в точке х0=0,5.
Я попробовала решить. Если что не так не забанивай а пиши сообщение :)
Наименьшее общее кратное трёх чисел будет 20.
Совпадать удары будут для 1-го колокола через 20: 4/3 = 15 ударов, для 2-го - через 20: 5/3 = 12 ударов, для 3-го через 20: 2 = 10 ударов.
Всего ударов за минуту сделают 1-й колокол 60с: 4/3с + 1(в начальный момент времени) = 46, 2-й колокол 60: 5/3 + 1= 37, 3-й колокол: 60: 2 + 1 = 31 удар.
Возьмём все удары 1-го колокола 46.
Для 2-го колокола учтем все удары, кроме совпадающих, т.е. вычтем совпадающие 37 - 12 -1(начальный) = 24.
Для 3-го колокола учтем все удары, кроме совпадающих, т.е. вычтем совпадающие31 - 10 -1(начальный) = 20.
Всего мы услышим 46 + 24 + 20 = 90 (ударов)
Значение функции f(1/2)=1+ln2+C (С можно принимать какое угодно число, примем С=0). Значение производной f'(1/2)=0. Тогда уравнение касательной запишется: y-(1+ln2)=0(x-1/2), y=1+ln2-уравнение касательной.
Если принять С=1, то уравнение касательной будет иметь вид y=2+ln2. Но тогда и функция будет иметь вид f(x)=2x-ln(x)+1. И т.д.
Даю примеры графиков этих функций и касательных в точке х0=0,5.