Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
(6x-1)²-(3-8x)(3+8x)-(10x+1)²=0
(6x-1)²+(8x-3)(8x+3)-(10x+1)²=0
(36x²-12x+1)+(8x-3)(8x+3)-(100x²+20x+1)=0
(36x²-12x+1)+(64x²-9)-(100x²+20x+1)=0
36x²-12x+1+64x²-9-100x²-20x-1=0
-32x-9=0
-32x=9
32x=-9
x=(-9)÷32
x=-9/32
5(x+2)^2+(2x-1)^2-9(x+3)(x-3)=22
5(x+2)²+(2x-1)²-9(x+3)(x-3)-22=0
5(x²+4x+4)+(4x²-4x+1)-9(x+3)(x-3)-22=0
(5x²+20x+20)+(4x²-4x+1)-(9x+1)-(9x+27)(x-3)-22=0
(5x²+20x+20)+(4x²-4x+1)-(9x²-27x+27x-81)-22=0
(5x²+20x+20)+(4x²-4x+1)-(9x²-81)-22=0
5x²+20x+20+4x²-4x+1-9x²+81-22=0
16x+80=0
16x=-80
x=(-80)÷16
x=-5
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3