В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vladyulin
vladyulin
25.08.2021 16:15 •  Алгебра

Как решать дальше! нужно найти промежутки возрастания и убывания функции: у=х^3-3х сначала нужно найти производную 3х^-3,затем к нулю 3х^-3> 0 ,тройку вынести за скобки .

Показать ответ
Ответ:
abroe
abroe
03.10.2020 03:56
Y=x^3-3x
Производная функции равна:
y'=3x^2-3
Приравниваем производную к нулю:
y'=0
3x^2-3=0
3(x^2-1)=0
x^2-1=0
x1=1
x2=-1
Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность)
Берём любую точку из каждого интервала и подставляем в производную (3x^2-3).
Из интервала (минус бесконечность; -1] возьмём -2.
3*(-2)^2-3=3*4-3=12-3=9
9>0, значит, на этом интервале функция возрастает.

Из интервала [-1;1] возьмём 0.
3*0^2-3=-3
-3<0, значит, на этот отрезке функция убывает.

Из интервала [1; плюс бесконечность) возьмём 2.
3*2^2-3=12-3=9
9>0, значит, функция возрастает.

ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота