В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
KSEN012
KSEN012
28.03.2022 20:53 •  Алгебра

Как решать уравнения типа 3^(2x+1)+3^(x+2)=324

Показать ответ
Ответ:
AльфаDog
AльфаDog
21.07.2020 15:56
3 ^{2x+1} + 3^{x+2} =324

3 ^{2x} *3+3^x*3^2=324

3*(3 ^{x} )^2+9*3^x=324

Пусть 3^x=y

3y²+9x=324  разделим обе части на 3
у²+3х=108
у²+3х-108=0
Д=3²-4*(-108)=9+432=441

y_{1} = \frac{-3+21}{2} = \frac{18}{2} =9

y_{2} = \frac{-3-21}{2} = \frac{-24}{2} =-12

3^x=9
                        3^x=-12 решений нет

3^x=3^2                      
x=2
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота