Решение Пусть х км/ч - скорость второго пешехода. Тогда скорость первого - (х+1) км/ч. Так как встретились пешеходы в 9 км от пункта А, путь первого составил 9 км, а путь второго - 10 км. Значит, второй пешеход провел в пути (10/х) часов, а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку. Составим равнение: 10/x = 9/(x + 1) + 1/2 10/x = (18 + x + 1)/([2*(x + 1)] 20x + 20 = 18x + x² + x x² – x – 20 = 0 x₁ = - 4 не удовлетворяет условию задачи x₂ = 5 5 (км/ч) - скорость второго пешехода 1) 5 + 1 = 6 (км/ч) - скорость первого пешехода ответ: 6 км/ч ; 5 км/ч.
∠1 + ∠2 = 180 градусов как односторонних углов. ∠2 - ∠1 = 40 градусов. 180 - 40 = 140 градусов 140:2 = 70 градусов - это ∠1 ∠2 = 180-70=110 градусов. ∠3 = ∠1 = 70 градусов - вертикальный к ∠1 ∠4 = ∠2 = 110 градусов - вертикальный к ∠2 ∠5 = ∠2 = 110 градусов как соответственный угол с ∠2 ∠6 = ∠1 = 70 градусов тоже как соответственный угол с ∠1 ∠8 = ∠5 = 110 градусов как вертикальные углы ∠7 = ∠6 = 70 градусов как вертикальный
Обозначение углов такое: на верхней прямой при пересечении слева наверху ∠5, далее по часовой стрелке 3,8.1 углы. На нижней прямой слева наверху ∠2, далее по часовой стрелке 7,4,6 углы. Проставь номера углов сам, как тебе удобно.
Пусть х км/ч - скорость второго пешехода.
Тогда скорость первого - (х+1) км/ч.
Так как встретились пешеходы в 9 км от пункта А,
путь первого составил 9 км, а путь второго - 10 км.
Значит, второй пешеход провел в пути (10/х) часов,
а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку.
Составим равнение:
10/x = 9/(x + 1) + 1/2
10/x = (18 + x + 1)/([2*(x + 1)]
20x + 20 = 18x + x² + x
x² – x – 20 = 0
x₁ = - 4 не удовлетворяет условию задачи
x₂ = 5
5 (км/ч) - скорость второго пешехода
1) 5 + 1 = 6 (км/ч) - скорость первого пешехода
ответ: 6 км/ч ; 5 км/ч.
∠2 - ∠1 = 40 градусов.
180 - 40 = 140 градусов
140:2 = 70 градусов - это ∠1
∠2 = 180-70=110 градусов.
∠3 = ∠1 = 70 градусов - вертикальный к ∠1
∠4 = ∠2 = 110 градусов - вертикальный к ∠2
∠5 = ∠2 = 110 градусов как соответственный угол с ∠2
∠6 = ∠1 = 70 градусов тоже как соответственный угол с ∠1
∠8 = ∠5 = 110 градусов как вертикальные углы
∠7 = ∠6 = 70 градусов как вертикальный
Обозначение углов такое: на верхней прямой при пересечении слева наверху ∠5, далее по часовой стрелке 3,8.1 углы.
На нижней прямой слева наверху ∠2, далее по часовой стрелке 7,4,6 углы. Проставь номера углов сам, как тебе удобно.