Раскладывать выражения на множители будем, используя группировки:
1). x – 3y + x2 – 9y2 = (x – 3y) + (x2 – 9y2).
По формуле а2 – b2 = (a – b)(а + b):
(x – 3y) + (x – 3y)(x + 3y).
Выносим выражение (x – 3y) за скобку:
(x – 3y)(1 + x + 3y).
2). 9m2 + 6mn + n2 – 25 = (9m2 + 2 ∙ 3mn + n2) – 25.
Упростим выражение в скобках по формуле квадрат суммы (а + b)2 = (а2 + 2ab + b2) и раскладываем как разность квадратов:
(3m + n)2 – 52 = (3m + n – 5)(3m + n + 5).
3). Выносим b3 за скобку и группируем:
ab5 – b5 – ab3 + b3 = b3(ab2 – b2 – a + 1) = b3((ab2 – b2) – (a – 1)) = b3[b2(a – 1) – (a – 1)].
Выносим общий множитель (a – 1) за скобку:
b3(a – 1)(b2 – 1).
4). 1– x2 + 10xy – 25y2 = 1– (x2 – 10xy + 25y2).
Выражение в скобке «сворачиваем» как квадрат разности, к полученному выражению применяем формулу разности квадратов а2 – b2 = (a – b)(а + b):
1– (x – 5y)2 = (1– x + 5y)(1+ x – 5y).
ответ: 1). x – 3y + x2 – 9y2 = (x – 3y)(1 + x + 3y); 2). 9m2 + 6mn + n2 – 25 = (3m + n – 5)(3m + n + 5); 3). ab5 – b5 – ab3 + b3 = b3(a – 1)(b2 – 1); 4). 1– x2 + 10xy – 25y2 = (1– x + 5y)(1+ x – 5y).
Объяснение:
1. Решите уравнения:
a) x² - 4x + 3 = 0
Δ=16-12=4 , √Δ=2
X1=(4-2)/2=1 ; x2=(4+2)/2=3
б) x² + 9x = 0
X(x+3)=0
X1=0 ; x+3=0
X2=-3
в) 7x² - x - 8 = 0
Δ=1+224=225 ; √Δ=15
X1=(1-15)/14=1 ; x2=(1+15)/14=16/14=8/7=1 1/7
г) 2x² - 50 = 0
2(x-25)=0
2(x-5)(x+5)=0
x-5=0 ; x-5=0
x1=5 x2=-5
2. Длина прямоугольника на 5 см больше ширины, а его площадь равна 36см2. Найдите стороны прямоугольника
&
A=? ; b=? ; S=36cm² ,
длина прямоугольника:a=x ширина прямоугольника:b= x-5 S=a*b
S=(x-5)*x
36=x²-5x
X²-5x-36=0
Δ=25+144=169 ; √Δ=13
X1=(5-13)/2=-8/2=-4 ( длина не может быть отрицательной0
x2=(5+13)/2=18/2=9
a=9cm
b=(9-5)=4cm
OTBET: длина прямоугольника:a=9cm Ili 4cm
ширина прямоугольника: b=4cm Ili 9cm
3. Один из корней данного уравнения равен 4. Найдите второй корень и число а: x² + x - a = 0
подставляем 4 в уравнение
4²+4-a=0
a=16+4=20
a=20 подставляем в уравнение x²+x-20=0
из формулы Вeта x1*x2=20 получаем: 4*x2=-20 == > x2= -5
OTBET: второй корень to:-5
4. Составьте квадратное уравнение, корни которого равны: -5 и 8
X^2+bx+c=0
из формулы Вeта
x1*x2=c
c=(-5)*8=-40
x1+x2=b
b=(-5)+8=3
OTBET: квадратное уравнение принимает вид:
x^2-3x-40=0
Раскладывать выражения на множители будем, используя группировки:
1). x – 3y + x2 – 9y2 = (x – 3y) + (x2 – 9y2).
По формуле а2 – b2 = (a – b)(а + b):
(x – 3y) + (x – 3y)(x + 3y).
Выносим выражение (x – 3y) за скобку:
(x – 3y)(1 + x + 3y).
2). 9m2 + 6mn + n2 – 25 = (9m2 + 2 ∙ 3mn + n2) – 25.
Упростим выражение в скобках по формуле квадрат суммы (а + b)2 = (а2 + 2ab + b2) и раскладываем как разность квадратов:
(3m + n)2 – 52 = (3m + n – 5)(3m + n + 5).
3). Выносим b3 за скобку и группируем:
ab5 – b5 – ab3 + b3 = b3(ab2 – b2 – a + 1) = b3((ab2 – b2) – (a – 1)) = b3[b2(a – 1) – (a – 1)].
Выносим общий множитель (a – 1) за скобку:
b3(a – 1)(b2 – 1).
4). 1– x2 + 10xy – 25y2 = 1– (x2 – 10xy + 25y2).
Выражение в скобке «сворачиваем» как квадрат разности, к полученному выражению применяем формулу разности квадратов а2 – b2 = (a – b)(а + b):
1– (x – 5y)2 = (1– x + 5y)(1+ x – 5y).
ответ: 1). x – 3y + x2 – 9y2 = (x – 3y)(1 + x + 3y); 2). 9m2 + 6mn + n2 – 25 = (3m + n – 5)(3m + n + 5); 3). ab5 – b5 – ab3 + b3 = b3(a – 1)(b2 – 1); 4). 1– x2 + 10xy – 25y2 = (1– x + 5y)(1+ x – 5y).
Объяснение:
Объяснение:
1. Решите уравнения:
a) x² - 4x + 3 = 0
Δ=16-12=4 , √Δ=2
X1=(4-2)/2=1 ; x2=(4+2)/2=3
б) x² + 9x = 0
X(x+3)=0
X1=0 ; x+3=0
X2=-3
в) 7x² - x - 8 = 0
Δ=1+224=225 ; √Δ=15
X1=(1-15)/14=1 ; x2=(1+15)/14=16/14=8/7=1 1/7
г) 2x² - 50 = 0
2(x-25)=0
2(x-5)(x+5)=0
x-5=0 ; x-5=0
x1=5 x2=-5
2. Длина прямоугольника на 5 см больше ширины, а его площадь равна 36см2. Найдите стороны прямоугольника
&
A=? ; b=? ; S=36cm² ,
длина прямоугольника:a=x ширина прямоугольника:b= x-5 S=a*b
S=(x-5)*x
36=x²-5x
X²-5x-36=0
Δ=25+144=169 ; √Δ=13
X1=(5-13)/2=-8/2=-4 ( длина не может быть отрицательной0
x2=(5+13)/2=18/2=9
a=9cm
b=(9-5)=4cm
OTBET: длина прямоугольника:a=9cm Ili 4cm
ширина прямоугольника: b=4cm Ili 9cm
3. Один из корней данного уравнения равен 4. Найдите второй корень и число а: x² + x - a = 0
&
подставляем 4 в уравнение
4²+4-a=0
a=16+4=20
a=20 подставляем в уравнение x²+x-20=0
из формулы Вeта x1*x2=20 получаем: 4*x2=-20 == > x2= -5
OTBET: второй корень to:-5
4. Составьте квадратное уравнение, корни которого равны: -5 и 8
&
X^2+bx+c=0
из формулы Вeта
x1*x2=c
c=(-5)*8=-40
x1+x2=b
b=(-5)+8=3
OTBET: квадратное уравнение принимает вид:
x^2-3x-40=0