В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
He12022005
He12022005
16.02.2020 15:30 •  Алгебра

Как вычислить сумму 1*(1+1)+2*(2+1)+3*(3+1)++n*(n+1)

Показать ответ
Ответ:
999999апро
999999апро
08.10.2020 20:24
Формулы во вложении.
=(1^2+2^2+3^2+...+n^2)+(1+2+3+...+n)=\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}=\frac{n(n+1)(2n+1)+3n(n+1)}{6}=\frac{n(n+1)(2n+4)}{6}=\frac{n^3+3n^2+2n}{3}
Как вычислить сумму 1*(1+1)+2*(2+1)+3*(3+1)++n*(n+1)
0,0(0 оценок)
Ответ:
RickeyF2228
RickeyF2228
08.10.2020 20:24
Задана числовая последовательность, n-й член которой определяется формулой a(n)= n*(n+1). Требуется найти сумму n членов S(n) этой последовательности 1*2+2*3+3*4+...+n*(n+1).
Решением является формула суммы: S(n)=n*(n+1)*(n+2)/3
Проверим методом индукции:
при n=1 S(1)=2,
при n=5 S(5)= 2+6+12+20+30=70= 5*6*7/3=70 -формула действует.
ответ: сумму заданной последовательности можно вычислить по формуле S(n)=n*(n+1)*(n+2)/3
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота