Смотри есть намного удобнее.Зачем перемножать всё,а если числа более громоздкие? ЯНам же нужен универсальный Будем упрощать!
1)125=25*5 2)26*52=26*2*26=(26)^2*2 Теперь смотрите ,можно использовать свойство,которое утверждает,что ,если мы будем перемножать какие-то числа под корнем,то можно извлекать корень по отдельности от каждого. У нас также получается вот,что [Всё под корнем]: 25*5*(26)^2*2,теперь будем извлекать по отдельности sqrt-знак корня sqrt(25*5) * sqrt((26)^2*2)=5*sqrt5 * 26*sqrt2=130sqrt10
1)125=25*5
2)26*52=26*2*26=(26)^2*2
Теперь смотрите ,можно использовать свойство,которое утверждает,что ,если мы будем перемножать какие-то числа под корнем,то можно извлекать корень по отдельности от каждого.
У нас также получается вот,что
[Всё под корнем]:
25*5*(26)^2*2,теперь будем извлекать по отдельности
sqrt-знак корня
sqrt(25*5) * sqrt((26)^2*2)=5*sqrt5 * 26*sqrt2=130sqrt10
[3;5].
Объяснение:
1) ⁴√(x-3)⁴ = lx-3l;
⁶√(5-x)⁶ = l5-xl, тогда
⁴√(x-3)⁴+⁶√(5-x)⁶= 2
lx-3l + l5-xl =2
2) Найдём нули подмодульных выражений:
х-3 = 0, х=3;
5-х = 0, х=5.
✓ если x∈ (-∞;3] , то lх-3l = -x+3; l5-xl = 5-x;
-x+3+5-x=2
-2x=2-8
-2x=-6
x=3
3 является корнем уравнения.
✓ если x∈ (3 ;5), то lх-3l = x-3; l5-xl = 5-x;
x-3+5-x=2
0•x=0
Любое число из промежутка (3 ;5) является корнем.
✓ если x∈ [5 ; +∞), то lх-3l = x-3; l5-xl = -5+x;
x-3-5+x=2
2x=2+8
2х = 10
х =5
5 является корнем уравнения.
Объединяя полученные решения, получим:
{3}∪(3;5)∪{5} = [3;5].