Какие из перечисленных уравнений не имеют корней ? отметьте все соответствующие ответы: 3x2+7x+7=0 5x2−x+1=0 5x2−6x+5=0 3x2+9x−2=0 x2−x+2=0 7x2−x+1=0 2x2−5x−8=0
Для геометрической прогрессии со знаменателем Q и первым членом B₁ верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:
Для геометрической прогрессии со знаменателем Q и первым членом B₁ верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:
Sₙ = B₁(Qⁿ - 1)/(Q - 1) = B₁(Q * Qⁿ⁻¹ – 1) / (Q – 1) = 2*(512Q - 1) / (Q - 1) = 2046 ⇒
1024Q - 2 = 2046(Q - 1) ⇒ 1024Q - 2 = 2046Q - 2046 ⇒
2046Q - 1024Q = 2046 - 2 ⇒ 1022Q = 2044 ⇒ Q = 2044 : 1022, Q = 2.
Далее Qⁿ⁻¹ = 512 ⇒ 2ⁿ⁻¹ = 512 = 2⁹ ⇒ n - 1 = 9, откуда n = N = 10,
за N заново обозначили количество членов данной прогрессии
ответ: Q = 2, N = 10
Проверка: 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 = 2046
Замена:
Решаем уравнение относительно у:
Возвращаемся к переменной х. Получили совокупность уравнений:
Решаем первое уравнение:
Решаем второе уравнение:
В ответ идут корни двух уравнений, фактически это будут корни второго уравнения, так как первое не имеет корней.
ответ:
2.
Перемножим первую и вторую, а также третью и четвертую скобки:
Замена:
Решаем уравнение относительно у:
Возвращаемся к переменой х. Имеем совокупности:
Решаем первое уравнение:
Решаем второе уравнение:
По теореме Виета: сумма двух чисел равна 3, а их произведение равно -4. Значит, эти числа -1 и 4.
ответ: -1; 4