В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Cesar123213
Cesar123213
17.01.2023 04:45 •  Алгебра

Какие из следующих формул задают функцию у от x, а какие HET.
1) у = -3х + 4;
2) y2 = x;
3) х = 8,— бу = 0?
даю 50б​

Показать ответ
Ответ:
berekesymbat2002123
berekesymbat2002123
29.07.2021 07:39

Объяснение:

1) прямая   у=2x+37 не является  касательной    к  графику    функции f(x)=x³-3x²-7x+10  ни при каких значениях x. Докажем это. Предположим что это не так. пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=t³-3t²-7t+10

f'(x)=3x²-6x-7;  f'(t)=3t²-6t-7

Уравнение касательной будет иметь вид:

y=f(t)+f'(t)(x-t)=t³-3t²-7t+10+(3t²-6t-7)(x-t)=(3t²-6t-7)x-2t³+3t²+10=2x+37⇔

3t²-6t-7=2  и -2t³+3t²+10=37

3t²-6t-7=2

3t²-6t-9=0

t²-2t-3=0⇒t₁=-1, t₂=3

t=-1⇒-2t³+3t²+10=2+3+10=15≠37

t=3⇒-2t³+3t²+10=-16+27+10=21≠37

t∈∅

2) прямая у=x+1 касается к графику функции f(x)=ах²+2x+3

а≠0, иначе прямая касалась бы прямой.

Пусть графики данных функций касаются в некоторой точке x₀=t. Тогда f(t)=аt²+2t+3

f'(x)=2ax+2;  f'(t)=2at+2

Уравнение касательной будет иметь вид:

y=f(t)+f'(t)(x-t)=аt²+2t+3+(2at+2)(x-t)=(2at+2)x-at²+3=x+1⇔2at+2=1  и -at²+3=1

2at+2=1⇒at=-0,5

2=at²=at·t=-0,5t⇒t=-4⇒a=1/8

3)  x(t)=0,5t³-3t²+2t

v(t)=x'(t)=1,5t²-6t+2

v(6)=1,5·6²-6·6+2=54-36+2=20 м/с

0,0(0 оценок)
Ответ:
DogFerty656
DogFerty656
29.05.2021 20:41
Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное

Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных)
Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит
Если 0<x<1то
для каждой степени x^{2n+1}<1
а значит л.ч. <1+2*1+3*1+...+20*1=\frac{20*21}{2}=420
--(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1
иначе для суммы первых натуральных чисел справедлива формула
1+2+3+...+n=\frac{n(n+1}{2})

При x=1 1^{2n+1}=1
Получаем равенство 1+2+...+20=210
x=1 - решение

и При x>1 получаем что л.ч. больше правой так как x^{2n+1}1
и л.ч. >1+2*1+...+20*1210
ответ: 1
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота