Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
sock2
01.10.2021 19:40 •
Алгебра
Какие из условий могут выполняться одновременно?
а) tg a =1 и ctg a =-1
б) tg a =1/2 и ctg a =√2
в) tg a =1/√2 и ctg a =√2
г) tg a =-1/2 и ctg a =-√3
Показать ответ
Ответ:
AsunaUmi
24.08.2020 18:37
1)y=x^2 /(x+5); x∈ [-4;1]
y=f(x); f(-4)=16/(-4+5)=16/1=16; наибольшее
f(1)=1/(1+5)=1/6;
y'=(x^2 /(x+5)'=(2x(x+5)-x^2)/ (x+5)^2=(x^2+10x)/ (x+5)^2;
y'=0; x^2+10x=0; x≠-5
x(x+10)=0; x=0 ili x=-10; -10∉[-4;1]
f(0)=0/(0+5)^2=0 наименьшее
2)y=sin2x -x; [-π/2;π/2]
f(-π/2)=sin(-π) +π/2=-sinπ +π/2=π/2=1,57; наибольшее
f(π/2)=sinπ -π/2=-π/2=-1,57 наименьшее
y'=(sin2x -x)'=2cos2x -1;
y'=0; 2cos2x -1=0; cos2x=1/2; 2x=+-π/3+2πn; x=+-π/6; x∈[/π/2; π/2]!
f(-π/6)=-sinπ/3) +π/6=√3/2 +π/6≈0,85+0,53=1,38;
f(π/6)=sinπ/3-π/6=√3/2 -π/6≠0,85-0,53=0,32
0,0
(0 оценок)
Ответ:
germandoter
24.08.2020 18:37
1)y=x^2 /(x+5); x∈ [-4;1]
y=f(x); f(-4)=16/(-4+5)=16/1=16; наибольшее
f(1)=1/(1+5)=1/6;
y'=(x^2 /(x+5)'=(2x(x+5)-x^2)/ (x+5)^2=(x^2+10x)/ (x+5)^2;
y'=0; x^2+10x=0; x≠-5
x(x+10)=0; x=0 ili x=-10; -10∉[-4;1]
f(0)=0/(0+5)^2=0 наименьшее
2)y=sin2x -x; [-π/2;π/2]
f(-π/2)=sin(-π) +π/2=-sinπ +π/2=π/2=1,57; наибольшее
f(π/2)=sinπ -π/2=-π/2=-1,57 наименьшее
y'=(sin2x -x)'=2cos2x -1;
y'=0; 2cos2x -1=0; cos2x=1/2; 2x=+-π/3+2πn; x=+-π/6; x∈[/π/2; π/2]!
f(-π/6)=-sinπ/3) +π/6=√3/2 +π/6≈0,85+0,53=1,38;
f(π/6)=sinπ/3-π/6=√3/2 -π/6≠0,85-0,53=0,32
0,0
(0 оценок)
Популярные вопросы: Алгебра
cashpass8754
03.12.2022 01:53
Всаду посадили одинаковыми 84 куста смородины.рядов было на 8 меньше,чем кустов в одном ряду. сколько кустов было в одном ряду?...
lazarenko2
05.01.2021 03:58
Найдите отношение a: b если число а составляет 40% числа b...
скорпион67
05.01.2021 03:58
Какое из следующих чисел 1) -0,1; 2) 0; 3) 0,1; 4) 0,2 заключено между числами 2/17 и 4/19...
aynaaaaa
05.01.2021 03:58
Найти промежутки возрастания функции у=5х^2-3х+1...
vika05lida811
31.12.2022 11:04
составьте систему для решения здачи...
cmh3
25.04.2023 03:13
2m3n-6m2n2+6mn3-2n4m=125n=25...
ruks777
30.05.2022 12:37
Знайдіть значення похідної функціїf(x) =x — 2Vxy точках 1, 9, x, x +1...
Znanijaetosila1
05.01.2022 20:52
5) Знайдіть кутовий коефіцієнт дотичної до графіка функціїf(x) = 1 + sin x у точці х0= п/6...
90125
06.09.2021 11:37
НАЙДИТЕ ТАНГЕНС УГЛА наклона касательной к графику функции в точке х0 если f(x)= cos^2x x0=-pi...
sok6
30.03.2022 08:10
Решите пример(z-5)(8z+1)(3z-8)...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
y=f(x); f(-4)=16/(-4+5)=16/1=16; наибольшее
f(1)=1/(1+5)=1/6;
y'=(x^2 /(x+5)'=(2x(x+5)-x^2)/ (x+5)^2=(x^2+10x)/ (x+5)^2;
y'=0; x^2+10x=0; x≠-5
x(x+10)=0; x=0 ili x=-10; -10∉[-4;1]
f(0)=0/(0+5)^2=0 наименьшее
2)y=sin2x -x; [-π/2;π/2]
f(-π/2)=sin(-π) +π/2=-sinπ +π/2=π/2=1,57; наибольшее
f(π/2)=sinπ -π/2=-π/2=-1,57 наименьшее
y'=(sin2x -x)'=2cos2x -1;
y'=0; 2cos2x -1=0; cos2x=1/2; 2x=+-π/3+2πn; x=+-π/6; x∈[/π/2; π/2]!
f(-π/6)=-sinπ/3) +π/6=√3/2 +π/6≈0,85+0,53=1,38;
f(π/6)=sinπ/3-π/6=√3/2 -π/6≠0,85-0,53=0,32
y=f(x); f(-4)=16/(-4+5)=16/1=16; наибольшее
f(1)=1/(1+5)=1/6;
y'=(x^2 /(x+5)'=(2x(x+5)-x^2)/ (x+5)^2=(x^2+10x)/ (x+5)^2;
y'=0; x^2+10x=0; x≠-5
x(x+10)=0; x=0 ili x=-10; -10∉[-4;1]
f(0)=0/(0+5)^2=0 наименьшее
2)y=sin2x -x; [-π/2;π/2]
f(-π/2)=sin(-π) +π/2=-sinπ +π/2=π/2=1,57; наибольшее
f(π/2)=sinπ -π/2=-π/2=-1,57 наименьшее
y'=(sin2x -x)'=2cos2x -1;
y'=0; 2cos2x -1=0; cos2x=1/2; 2x=+-π/3+2πn; x=+-π/6; x∈[/π/2; π/2]!
f(-π/6)=-sinπ/3) +π/6=√3/2 +π/6≈0,85+0,53=1,38;
f(π/6)=sinπ/3-π/6=√3/2 -π/6≠0,85-0,53=0,32