1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
1) 45° и 315° (360°-45°) - углы между часовой и минутными стрелками в 19:30. Наименьший угол равен 45°. Пояснение решения: В то время, когда часы показывают 19:30, минутная стрелка показывает на цифру 6, а часовая находится ровно посередине между цифрами 7 и 8 циферблата. Циферблат (360°) разделен цифрами на 12 равных частей, поэтому 360°:12=30° - градусная мера дуги между двумя соседними цифрами циферблата 30°:2=15°- градусная мера половины дуги между двумя соседними цифрами циферблата 30°+15°=45°- искомый угол между стрелками в 19:30
Все деревни будут связаны друг с другом через центр.
Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога,
тогда рассуждаем так.
Мы проводим от каждой из 25 деревень дороги ко всем 24.
Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А.
Значит, количество дорог надо разделить на 2.
25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6)
Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно.
Корни я нашел с Вольфрам Альфа.
Пояснение решения:
В то время, когда часы показывают 19:30, минутная стрелка показывает на цифру 6, а часовая находится ровно посередине между цифрами 7 и 8 циферблата. Циферблат (360°) разделен цифрами на 12 равных частей, поэтому
360°:12=30° - градусная мера дуги между двумя соседними цифрами
циферблата
30°:2=15°- градусная мера половины дуги между двумя соседними
цифрами циферблата
30°+15°=45°- искомый угол между стрелками в 19:30
2) (cos45°-1)(cos45°+1)=cos²45°-1=(√2/2)²-1=1/2 -1= -1/2