7) Диагонали ромба перпендикулярны и в точке пересечения деляться пополам и все стороны ромба равны между собой. Диагоналями ромб делится на 4 равных прямоугольных треугольника.Сторонами которых являются :1) сторона ромба - гипотенуза АВ, 2)половина первой диагонали АО - катет, 3) половина второй диагонали ВО - катет.
АО²=АВ²-ВО²=289-225=64, АО=8
Тогда вся диагональ АС=2*8=16
8)ΔАВС, <С=90⁰
Обозначим с=АВ, а=ВС, в=АС
По условию: с:а=5:3, то есть с=5х, а=3х ⇒ в²=с²-а²=25х²-9х²=16х² ⇒ в=4х
Y=4-x² 1. ОДЗ: x∈(-∞;+∞) 2. Чётность функции: 4-х²=4-(-х)²≡4-х², ⇒ функция чётная (симметричная относительно оси ОУ). 3. Критические точки: y`=(4-x²)`=-2x=0 у(0)=4-0²=4 ⇒ уmax=4, а (0;4) - точка перегиба. x=0 y`=0 ⇒ y`(0)=0 ⇒ имеем два интервала: -∞+0-+∞ Знак интервала определили простой подстановкой значений из интервала в уравнение у`=-2x y`>0 - функция убывает. y`<0 - функция возрастает. 4. Исследование на вогнутость и выпуклость: Точка перегиба х=0 у=4-х²=0 х₁ -2 х₂=2 -∞+-2+0-2-+∞ ⇒ x∈(-∞;0) - выпуклая. x∈(0;+∞) - вогнутая. Вывод: это парабола, опущенная вниз, вершина которой поднята относительно оси ОУ на 4 единицы.
7) Диагонали ромба перпендикулярны и в точке пересечения деляться пополам и все стороны ромба равны между собой. Диагоналями ромб делится на 4 равных прямоугольных треугольника.Сторонами которых являются :1) сторона ромба - гипотенуза АВ, 2)половина первой диагонали АО - катет, 3) половина второй диагонали ВО - катет.
АО²=АВ²-ВО²=289-225=64, АО=8
Тогда вся диагональ АС=2*8=16
8)ΔАВС, <С=90⁰
Обозначим с=АВ, а=ВС, в=АС
По условию: с:а=5:3, то есть с=5х, а=3х ⇒ в²=с²-а²=25х²-9х²=16х² ⇒ в=4х
В то же время по усл. в=36 ⇒ 4х=36, х=9
с=5х=5*9=45 , а=3х=3*9=27
Р=а+в+с=27+36+45= 108
9) АВСД - трапеция (ВС||АД), АВ=СД=25, ВС=10, АД=24
Опустим высоты ВН и СМ, ВН=СМ
АН=МД=(АД-ВС)/2=(24-10)/2=7
Из ΔАВН : ВН²=АВ²-АН²=625-49=576, ВН=24
Средняя линия равнa m=(АД+ВС)/2=(24+10)/2=17
1. ОДЗ: x∈(-∞;+∞)
2. Чётность функции: 4-х²=4-(-х)²≡4-х², ⇒ функция чётная (симметричная относительно оси ОУ).
3. Критические точки:
y`=(4-x²)`=-2x=0
у(0)=4-0²=4 ⇒ уmax=4, а (0;4) - точка перегиба.
x=0 y`=0 ⇒ y`(0)=0 ⇒ имеем два интервала:
-∞+0-+∞
Знак интервала определили простой подстановкой значений из интервала в уравнение у`=-2x
y`>0 - функция убывает.
y`<0 - функция возрастает.
4. Исследование на вогнутость и выпуклость:
Точка перегиба х=0
у=4-х²=0 х₁ -2 х₂=2
-∞+-2+0-2-+∞ ⇒
x∈(-∞;0) - выпуклая.
x∈(0;+∞) - вогнутая.
Вывод: это парабола, опущенная вниз, вершина которой поднята относительно оси ОУ на 4 единицы.