В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
hopelless2124
hopelless2124
02.06.2020 02:35 •  Алгебра

Какое из чисел -12; 0; 5 [-4; 0; 14] является корнем уравнения 3ч-2=2(х+1)-4 [4х+5=6+5(х-3)]

Показать ответ
Ответ:
толян50
толян50
20.04.2021 11:20
Т. к исходный график параллелен прямой у=3х-1 , значит, в исходной формуле  к=3, так как график проходит через точку м(2; 1), то можно подставить в формулу у=кх+b вместо х и у значения 2 и 1 соответственно и  k=3, получаем: 1=3*2+b 1=6+b b=-5 y=3x-5чертим систему координат, отмечаем положительные направления стрелками  вправо и вверх, подписываем оси вправо - х, вверх -у. отмечаем начало координат   - точка о и единичные отрезки по каждой оси в 1 клетку. графиком является прямая, для её построения достаточно двух точек, запишем их координаты в таблицу: х=     0       3 у=   -5       1 ставим координаты в системе и проводим через них прямую линию. подписываем график у=3х-5.
0,0(0 оценок)
Ответ:
chuckcher
chuckcher
15.07.2022 14:26

Объяснение: 2x²-8x+c = 0.

Имеем квадратное уравнение, где с - некоторое произвольное число (параметр), поэтому при разных значениях с уравнение может как иметь корни, так и не иметь. Поэтому нужно решить уравнения для всех возможных значений с.

Найдем дискриминант: D = b^2 - 4ac = (-8)^2-4\cdot2\cdot c=64-8c.

Рассмотрим 3 различных случая:

1) D < 0. Если D < 0, то уравнение не имеет решений. Найдем значения с, при которых дискриминант отрицателен: 64 - 8c < 0; 8c > 64 ⇔ c > 8. При таких значениях с корней у нас не будет вообще.

2) D = 0. Если D = 0, то уравнение имеет единственное решение: x = -\frac{b}{2a} =-\frac{-8}{2\cdot2} =2. Найдем значение с, при котором дискриминант равен 0: 64 - 8c = 8 ⇔ c = 8. При таком значении параметра имеем один корень - х = 2.

3) D > 0. Если D > 0, то уравнение имеет два различных корня, которые находятся по общей формуле: x_{1,2}=\frac{-b\pm\sqrt{D} }{2a}. Выразим каждый из корней:

x_1=\frac{-(-8)+\sqrt{64-4c} }{2\cdot2} =\frac{8+\sqrt{4(16-c)} }{4} =\frac{8+2\sqrt{16-c} }{4} =2+\frac{1}{2} \sqrt{16-c} .

Аналогично x_2=2-\frac{1}{2} \sqrt{16-c} .

Найдем значения с, при которых дискриминант положителен: 64 - 8с > 0;  8с < 64 ⇔ c < 8. При таких значениях параметра у нас будут два корня: x_{1,2}=2\pm\frac{1}{2} \sqrt{16-c} .

ОТВЕТ: если с < 8, то x=2\pm\frac{1}{2}\sqrt{16-c}; если с = 8, то х = 2; если с > 8, то корней нет.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота