ответ:Объяснение:Предположим, что клетки квадрата n × n удалось раскрасить таким образом, что для любой клетки с какой-то стороны от неё нет клетки одного с ней цвета. Рассмотрим тогда все клетки одного цвета и в каждой из них нарисуем стрелочку в том из четырёх направлений, в котором клетки того же цвета нет. Тогда на каждую клетку «каёмки» нашего квадрата будет указывать не более одной стрелки. Так как клеток каёмки всего 4n – 4, то и клеток каждого цвета не более 4n – 4. С другой стороны, каждая из n² клеток нашего квадрата раскрашена в один из четырёх цветов, то есть n² ≤ 4(4n – 4). Для решения задачи теперь достаточно заметить, что последнее неравенство неверно при n = 50. Несложно убедиться, что оно неверно при всех n ≥ 15, и, следовательно, утверждение задачи верно уже в квадрате 15 × 15 — а заодно и в любом большем квадрате.
выполнить умножение:
а) 2х * (х^2 + 8х - 3) = 2х^3 + 16х^2 - 6х=2х^3 + 16х^2 - 6х.
б) -3а * (а^2 + 2ас - 5с) = -3а^3 - 6а^с + 15ас.=-3а^3 - 6а^с + 15ас.
в) 0,3ху * (2ху^2 - 4х^2у + 3ху) = 0,6х^2у^3 - 1,2х^3у^2 + 0,9х^2у^2.
упростить выражение:
а) -2х(х + 4) +5(х2 – 3х)= -X-8-10-4+9
б) 2а(3а – а2) – 4а(2а2 – 5а)=9a-a2 -8 -4 +2 -10
Решить уравнение:
а) 5х(х- 4) –х(3 + 5х) =4
5х²-20х-3х-5х²=4
-23х=4
х=-4\23
б) 7х – 2х2 + 4 = х(5 – 2х)
7x-2x²+4=x(5-2x)
7x-2x²+4=5x-2x²
7x+4-5x=0
2x+4=0
2x=-4
X=-2
в) 2х(3х – 2) -3(х2 – 4х) =3х(х – 7) +2
6x-4-12x+9=2
-6x+5=2-4x
-6x+4x=2-5
-2x=-3
х=(-3):(-2)
х=1,5
Объяснение: