Какое преобразование графика функции y = 1/x было выполнено для построения графика
функции y = 3/x+3 ?
а) растяжение графика относительно оси ординат, параллельный перенос графика вдоль оси
абсцисс на 3 единицы влево;
б) сжатие графика относительно оси ординат, параллельный перенос графика вдоль оси абсцисс
на 3 енцы влево;
в) растяжение графика относительно осн ординат;
г) параллельный перенос графика вдоль оси абсцисс на 3 единицы влево;
д) растяжение графика относительно оси абсцисс, параллельный перенос графика вдоль оси
абсцисс на 3 единицы влево
2x^2 = -18 | (делим на 2)
X^2 = -9
X1 = 3 и x2 = -3
3) x^2 + x - 6 = 0
D = b^2 -4ac
D = 1^2 - 4*1*(-6) = 1 + 24 = 25
X1 = -1+ корень из 25/2 = -1+5/2 = 4/2 = 2
X2 = -1 - корень из 25/2 = -1 -5/2 = -6/2 = -3
4) так же ка второе
5) 4x^2 - 36 = 0 | делим все на 4
X^2 - 9 = 0
X^2 = 9
X = 3 и x2= -3
6) x^4 -25x +144 = 0
X = t (тут замена, вроде)
X^2 -25x + 144 = 0
D = (-25)^2 - 4*1*144 = 625 - 576 = 49
X1 = -(-25)+ корень из 49 = 25+7 = 32
X2= -(-25) - корень из 49 = 25 -7 = 18
Дальше нужно подставлять куда-то в замену вроде, я не помню
1) Производная = 4х³ -12х²-16х
2) 4х³ - 12х² -16 х = 0
х( 4х² -12х -16) = 0
х = 0 или 4х² -12х -16 = 0
х² - 3х - 4 = 0
х = 4 х = -1
проверим знак производной на каждом промежутке
3) -∞ - -1 + 0 - 4 + +∞
х = -1 - это точка минимума
х = 0 -это точка максимума
х = 4 - это точка минимума
б) у =х + 4/х
1) Производная = 1 - 4/х² = (х² - 4)/х²
2) (х² - 4)/х² = 0 (х≠0)
х² - 4 = 0
х² = 4
х = +-2
проверим знак производной на каждом промежутке
-∞ + -2 - 0 - 2 + +∞
х = -2 - это точка максимума
х = 2 - это точка минимума
3) у = х - 2√х -2)
производная = 1 - 1/√х -2)
Найдём критические точки:
1 - 1/√(х - 2) = 0
(√х - 2) - 1)/√(х -2)= 0
√( х -2) - 1 = 0 ⇒ √(х - 2 = 1|² ⇒х - 2 = 1 ⇒х = 3
х больше 2
2 - 3 + +∞
х = 3 - это точка минимума.