Каково взаимное расположение графиков функций: у= 7х – 4 и у = 7х + 11; у=-4х и у = -4х -2 у= 10х +8 и у= -10х + 6 у=3х+1 и у= -4х +10 у= 3х-5 и у = -6х + 1 у = 12 х и у = -8х
1 1+(y+1)/(y-2)=(3y+1)/(y+2) Общий знаменатель (у-2)(у+2)≠0⇒y≠2,y≠-2 (y-2)(y+2)+(y+1)(y+2)=(3y+1)(y-2) y²-4+y²+2y+y+2-3y²+6y-y+2=0 -y²+8y=0 -y(y-8)=0 y=0 y=8 2 5-(2y-2)/(y+3)=(y+3)/(y-3) Общий знаменатель (y+3)(y-3)≠0⇒y≠-3,y≠3 5(y+3)(y-3)-(2y-2)(y-3)=(y+3)(y+3) 5y²-45-2y²+6y+2y-6-y²-6y-9=0 2y²+2y-60=0 y²+y-30=0 y1+y2=-1 U y1*y2=-30 y1=-6 U y2=5 3 y/(y+3)-1/(y-3)=18/(y-3)(y+3) Общий знаменатель (y-3)(y+3)≠0⇒y≠3,y≠-3 y(y-3)-(y+3)=18 y²-3y-y-3-18=0 y²-4y-21=0 y1+y2=4 U y1*y2=-21 y1=7 U y2=-3 не удов усл 4 7/(y+2)+8/(y-2)(y+2)=y/(y-2) Общий знаменатель (y-2)(y+2)≠0⇒y≠2,y≠-2 7(y-2)+8=y(y+2) y²+2y-7y+14-8=0 y²-5y+6=0 y1+y2=5 U y1*y2=6 y1=3 U y2=2 не удов усл
1+(y+1)/(y-2)=(3y+1)/(y+2)
Общий знаменатель (у-2)(у+2)≠0⇒y≠2,y≠-2
(y-2)(y+2)+(y+1)(y+2)=(3y+1)(y-2)
y²-4+y²+2y+y+2-3y²+6y-y+2=0
-y²+8y=0
-y(y-8)=0
y=0 y=8
2
5-(2y-2)/(y+3)=(y+3)/(y-3)
Общий знаменатель (y+3)(y-3)≠0⇒y≠-3,y≠3
5(y+3)(y-3)-(2y-2)(y-3)=(y+3)(y+3)
5y²-45-2y²+6y+2y-6-y²-6y-9=0
2y²+2y-60=0
y²+y-30=0
y1+y2=-1 U y1*y2=-30
y1=-6 U y2=5
3
y/(y+3)-1/(y-3)=18/(y-3)(y+3)
Общий знаменатель (y-3)(y+3)≠0⇒y≠3,y≠-3
y(y-3)-(y+3)=18
y²-3y-y-3-18=0
y²-4y-21=0
y1+y2=4 U y1*y2=-21
y1=7 U y2=-3 не удов усл
4
7/(y+2)+8/(y-2)(y+2)=y/(y-2)
Общий знаменатель (y-2)(y+2)≠0⇒y≠2,y≠-2
7(y-2)+8=y(y+2)
y²+2y-7y+14-8=0
y²-5y+6=0
y1+y2=5 U y1*y2=6
y1=3 U y2=2 не удов усл
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 83). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
83 = √а
(83)² = (√а)²
а=6889;
b) Если х∈[0; 36], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√36=6;
При х∈ [0; 36] у∈ [0; 6].
с) y∈ [14; 28]. Найдите значение аргумента.
14 = √х
(14)² = (√х)²
х=196;
28 = √х
(28)² = (√х)²
х=784;
При х∈ [196; 784] y∈ [14; 28].
d) Найдите при каких х выполняется неравенство у ≤ 5.
√х <= 5
(√х)² <= (5)²
х <= 25;
Неравенство у ≤ 5 выполняется при х <= 25.