Любая сторона треугольника меньше суммы двух других его сторон.
Обозначим а - боковая сторона, с - основание.
1) Пусть а = 2 см и с = 5 см.
Должно выполняться неравенство: с < 2а.
5 < 2 · 2 - неверно.
Значит боковая сторона 5 см, основание 2 см.
2) Если а = 9 см и с = 21 см, то неравенство
21 < 2 · 9 - неверно.
Значит 21 см - боковая сторона, 9 см - основание.
3) Если а = 3 дм и с = 6 дм, то неравенство
6 < 2 · 3 - неверно.
Значит 6 дм - боковая сторона, 3 см - основание.
Объяснение:
Любая сторона треугольника меньше суммы двух других его сторон.
Обозначим а - боковая сторона, с - основание.
1) Пусть а = 2 см и с = 5 см.
Должно выполняться неравенство: с < 2а.
5 < 2 · 2 - неверно.
Значит боковая сторона 5 см, основание 2 см.
2) Если а = 9 см и с = 21 см, то неравенство
21 < 2 · 9 - неверно.
Значит 21 см - боковая сторона, 9 см - основание.
3) Если а = 3 дм и с = 6 дм, то неравенство
6 < 2 · 3 - неверно.
Значит 6 дм - боковая сторона, 3 см - основание.
Объяснение:
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2) log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z