Найти: вторую высоту h₂, соответствующей второй стороне.
Решение.
Воспользуемся формулой площади параллелограмма: S = a·h, то есть площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
Возможны 2-случая.
1-случай (см. рисунок-1): S = AD·h₁ = 12·4 (см²) = 48 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
S = CD·h₂ = 48 (см²)
Отсюда:
9 см · h₂ = 48 (см²)
h₂ = 48 : 9 см = 16/3 см = 5 1/3 см.
ответ: h₂ = 16/3 см = 5 1/3 см.
2-случай (см. рисунок-2): S = CD·h₁ = 9·4 (см²) = 36 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
x²-2xy+y²-4y²=0
(x-y)² - (2y)² =0
(x-y-2y)(x-y+2y)=0
(x-3y)(x+y)=0
x-3y=0 x+y=0
x=3y x= -y
При x=3y:
(3y)²-3y*y-2*3y-3y=6
9y²-3y²-6y-3y=6
6y²-9y-6=0
2y²-3y-2=0
D=3²-4*2*(-2)=9+16=25
y₁=(3-5)/4=-0.5 x₁=3*(-0.5)=-1.5
y₂=(3+5)/4=2 x₂=3*2=6
При x=-y:
(-y)² - (-y)*y - 2*(-y) -3y=6
y²+y²+2y-3y-6=0
2y²-y-6=0
D=1-4*2*(-6)=1+48=49
y₁=(1-7)/4=-1.5 x₁=-(-1.5)=1.5
y₂=(1+7)/4=2 x₂=-2
ответ: (-2; 2); (-1.5; -0.5); (1.5; -1.5); (6; 2).
h₂ = 16/3 см или h₂ = 3 см.
Объяснение:
Дано:
Параллелограмм ABCD
AB = CD = 9 см
BC = AD = 12 см
h₁ = 4 см - высота, соответствующая одной стороне
Найти: вторую высоту h₂, соответствующей второй стороне.
Решение.
Воспользуемся формулой площади параллелограмма: S = a·h, то есть площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
Возможны 2-случая.
1-случай (см. рисунок-1): S = AD·h₁ = 12·4 (см²) = 48 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
S = CD·h₂ = 48 (см²)
Отсюда:
9 см · h₂ = 48 (см²)
h₂ = 48 : 9 см = 16/3 см = 5 1/3 см.
ответ: h₂ = 16/3 см = 5 1/3 см.
2-случай (см. рисунок-2): S = CD·h₁ = 9·4 (см²) = 36 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
S = AD·h₂ = 36 (см²)
Отсюда:
12 см · h₂ = 36 (см²)
h₂ = 36 : 12 см = 3 см
ответ: h₂ = 3 см.