В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bilianskamaria03
bilianskamaria03
05.05.2022 12:34 •  Алгебра

Какую замену необходимо выполнить при решении уравнения

Показать ответ
Ответ:
VikaTomaRetaSasha
VikaTomaRetaSasha
28.10.2021 04:46

1)(3x^2-12)/(1-11x)>0

  3(x^2-4)/(11(1/11-x))>0

  3(x-2)(x+2)/(11(1/11-x))>0

 +              -               +          -

(-2)(1/11)(2)

(-бескон.;-2)объединено(1/11;2)

 

2)243*(1/81)^{3x-2}=27^{x+3}

 3^{5} *(3^(-4})^{3x-2}=(3^3)^{x+3}

 3^{5} *3^{-12x+8}=3^{3x+9}

 3^{5-12x+8}=3^{3x+9}

 3^{13-12x}=3^{3x+9}

 13-12x=3x+9

 -12x-3x=9-13

 -15x=-4

  x=4/15

3)я не уверен, что ты правильно написал функцию проверь.

Мне кажется, что f(x)=1+8x-x^2, а не как у тебя 1+8-x^2

Решу для f(x)=1+8x-x^2

f`(x)=8-2x=2(4-x)

f`(x)=0 при   2(4-x)=0

                 4-x=0

                 х=4 принадлежит [2;5)

f(2)=1+8*2-2^2=1+16-4=13

f(4)=1+8*4-4^2=1+32-16=17-наибольшее значение

f(5)=1+8*5-5^2=1+40-25=16

 

4)2cos(x/2)+sqrt{2}=0

 cos(x/2)=-sqrt{2}/2

 x/2=pi- pi/4+2pi*n

 x/2=3pi/4 +2pi*n |*2

 x=6pi/4+4pi*n

 x=3pi/2+4pi*n, n принадлежит Z

 

5)16^{x} -5*4^{x}=-4

  (4^{x})^{2} -5*4^{x}+4=0 |t=4^{x}

   t^2-5t+4=0

   t1=1;              t2=4

   4^{x}=1           4^{x}=4^{1}

   4^{x}=4^{0}      x=1

    x=0

ответ: 0;1

 

6) log_{\frac{1}{4}}\frac{3x+2}{2x-7}=-1

  (3x+2)/(2x-7)=4

  3x+2=4(2x-7)

  3x+2=8x-28

  3x-8x=-2-28

  -5x=-30

   x=6

 

Находим ОДЗ: (3х+2)/(2х-7)>0

                    3(x+2/3)/(2(x-3,5))>0

             +                 -                +      

          (-2/3)(3,5)

 

         (-бескон., -2/3) объединено(3,5;+бесконечность)

 

х=6 входит в область определения

ответ: 6

 

7)27^{x}<9^{x^2-1}

 3^{3x}<3^{2x^2-2}

 3x<2x^2 -2

 2x^2 -3x-2>0

 D=25

 x1=2,  x2=-1/2

 

8){x-y=7

 {log-2(2x+y)=3

 

 {x-y=7

 {2x+y=8

  y=8-2x

  x-(8-2x)=7

  x-8+2x=7

  3x=15

  x=5

  y=8-2*5=-2

 

 ответ:(5;2)

 

Подробнее - на -

Объяснение:

0,0(0 оценок)
Ответ:
mishel7884
mishel7884
03.06.2022 05:35

Дана функция у = (х-1)²/x².

1.Область определения функции. D ∈ R : x ≈ 0.

2. Нули функции. Точки пересечения графика функции с осью ОХ.

График функции пересекает ось X при f = 0.

Значит, надо решить уравнение (х-1)²/x² = 0.

Решаем это уравнение (достаточно приравнять нулю числитель):

(х-1)² = 0, х-1 = 0, х = 1.

Точки пересечения с осью X: (1; 0).

График пересекает ось Y, когда x равняется 0.

Подставляем x = 0 в (x - 1)²/x².

Результат: (0 - 1)²/0² невыполним, значит, график не пересекает ось Оу.

3. Промежутки знакопостоянства функции.

Так как переменная в числителе и знаменателе в квадрате, то функция на всей числовой оси только положительна.

4. Симметрия графика (чётность или нечётность функции).

f(-x) = ((-x) - 1)²/((-x)²) = (x + 1)²/x² ≠ f(x) ≠ -f(-x).

Поэтому функция не чётная и не нечётная.

5. Периодичность графика. Не периодична.

6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - смотри приложение.

7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.

Первая производная: y' = (1/x²)*(2x - 2) - (2/x³)*(x - 1)²

или y' = (2x - 2)/x³.

Находим нули функции. Для этого приравниваем производную к нулю

(достаточно числитель): 2x-2 = 0

Откуда: x1 = 2/2 = 1.

(-∞ ;0) (0; 1) (1; +∞)

f'(x) > 0 f'(x) < 0 f'(x) > 0

функция возрастает функция убывает функция возрастает.

В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.

8. Интервалы выпуклости, точки перегиба.

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:

\frac{d^{2}}{d x^{2}} f{\left (x \right )} =

Вторая производная

\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right) = 0

Решаем это уравнение

Корни этого ур-ния

x_{1} = \frac{3}{2}

Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:

Точки, где есть неопределённость:

x_{1} = 0.

\lim_{x \to 0^-}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

\lim_{x \to 0^+}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

- пределы равны, значит, пропускаем соответствующую точку.

Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках

(-oo, 3/2]

Выпуклая на промежутках

[3/2, oo)

9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - смотри приложение.

10. Дополнительные точки, позволяющие более точно построить график - даны в приложении.

11. Построение графика функции по проведенному исследованию дан в приложении.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота