Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Задать вопрос
Войти
АнонимГеометрия13 мая 17:10
треугольник MNP равнобедренный. один из углов равен 112 градусам. найти углы
ответ или решение1
Боброва Кира
Рассмотрим два возможный случая.
1 случай.
Данный угол величиной 112° является углом при вершине данного равнобедренного треугольника.
Тогда два других угла при основании будут равны между собой.
Обозначим через x величину этих углов.
Так как при сложении величин всех трех углов всякого треугольника в результате получается 180°, можем составить следующее уравнение:
х + х + 112 = 180,
решая которое, получаем:
2х + 112 = 180;
(2х + 112) / 2 = 180 / 2;
х + 56 = 90;
х = 90 - 56 = 34°.
2 случай.
Данный угол величиной 112° является углом при основании данного равнобедренного треугольника.
Тогда другой угол при основании также должен составлять 112°.
Так как суммы этих двух углов, равная 112 + 112 = 224° больше 180°, то такого треугольника не существует.
ответ: 112°, 54°, 54°.
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1