Катер должен пересечь реку шириной 75м и со скоростью течения
0.5 м/с так, чтобы причалить точно напротив места отправления. Он может двигаться с разными скоростями, при этом время в пути, измеряемое в секундах, определяется выражением , где — острый угол, задающий направление его движения (отсчитывается от берега). Под каким минимальным углом (в градусах) нужно плыть, чтобы время в пути было не больше 150 с?
Найти промежутки убывания функции y= -3x^3+6x^2-5x
Найдём производную функции:
y` = - 9x² + 12x - 5
Для нахождения промежутков убывания функции найдём точки, в которых y` = 0.
9x² - 12x + 5 = 0
D = 144 - 4*9*5 = - 36 < 0
решений нет
Если в условии
y= -3x^3+6x^2+5x , то
y` = 9x² - 12x - 5
y` = 0
9x² - 12x - 5 = 0
D = 144 + 4*9*5 = 324
x₁ = (12 - 18) / 18 = - 6/18 = - 1/3
x₂ = (12 + 18) / 18 = 30 / 18 = 5/3 = 1(2/3)
y + - -
>
y` -∞ -1/3 1(2/3) +∞
Функция убывает на промежутке [ - 1/3; 1(2/3)]
ответ: 2^97
Объяснение:
Найдем наибольшую степень двойки что меньше чем 100.
Очевидно что это 2^6=64 (2^7=128>100)
Понятно ,что число содержащее 6 двоек единственно n1=1 .
Теперь разберемся как посчитать число чисел которые кратны только на 2^5 ( не больше чем на эту степень двоек)
Все числа кратные на 2^5 можно записать так:
2^5 ,2^5*2 ;2^5*3 ;2^5*42^5*n . Соответственно из всех n нас интересуют только нечетные , при этих n число будет кратно ровно на 2^5.
Найдем максимальное n, что 32*n<100
Очевидно что nmax=3 (3*32=96) (число нечетных чисел тут равно n2=2)
Для справки сразу скажем ,что число нечетных чисел на интервале от 1 до k равно k/2- если k-четное и (k+1)/2 ,если k-нечетное.
По аналогии посчитаем число таких чисел для 2^4=16
nmax=6 (6*16=96) (число нечетных чисел n3=6/2=3)
Для 2^3=8 :
nmax=12 (8*12=96) (n4=12/2=6)
Для 2^2=4 :
nmax=25 (4*25=100) ( n5=(25+1)/2=13)
Для 2^1=2
nmax=50 (2*50=100) (n6=50/2=25)
Осталось посчитать общее количество двоек:
N=6n1+5n2+4n3+3n4+2n5+n6=6+10+12+18+26+25=97
Значит 100! делится на 2^97.