Катер проплив 4 км проти течії і 15 км за течією річки за той самий час який йому знадобився для проходження 18 км озером. Яка власна швидкість катера якщо швидкість течії річки дорівнює 3 км/год
Для начала делим все произведение на COSx, при этом найдя ОДЗ для косинуса (Не равно нулю!). ОДЗ будет х не равно пи/2+пи*n, n принадлежит Z. Получим 4 + 3tg x - 10 tg^2(x) = 0 умножаем на (-1) 10tg^2 (x) - 3tgx - 4=0. Заменяем tg x = t. и решаем квадратное уравнение относительно t. 10t^2 - 3t - 4 = 0 t1 = (3-13)\ 20 = - 0.5 t2 = 0.8 подставляем полученные значения вместо tgx=t tgx= - 0.5 x = arctg (-0.5) + Пи*n, n принадлежит Z x = - arctg 0.5 = ПИ*n? n принадлежит Z tg x = 0.8 x = arctg 0.8 + Пи*n, n принадлежит Z
Найдём уравнение прямой, проходящей через точки (-3; 0) и (-1; 3).
(х + 3)/(-1 + 3) = (у -0)/(3 - 0)
3(х + 3) = 2у
у = 1,5х + 4,5
Найдём точки пересечения этой прямой с осью Ох
у = 0;
1,5х + 4,5 = 0
х = -3
парабола у = 3х касается оси Ох в точке х = 0.
Найдём точки пересечения параболы у = 3х² и прямой у = 1,5х + 4,5
3х² = 1,5х + 4,5
3х² - 1,5х - 4,5 = 0
2х² - х - 3 = 0
D = 1 + 24 = 25
x1 = (1 - 5)/4 = -1
x2 = (1 + 5)/4 = 1.5
Изобразим графики, заданные уравнениями параболы и прямой.
Смотри рисунок на прикреплённом файле.
Очевидно, что фигура, заключённая между параболой, наклонной прямой и осью Ох, представляет собой криволинейный треугольник. Причем левая половина этого треугольника ограничена наклонной прямой и осью Ох, а правая половина - параболой и осью Ох. Соответственно, и интегралов будет два
Получим 4 + 3tg x - 10 tg^2(x) = 0 умножаем на (-1)
10tg^2 (x) - 3tgx - 4=0. Заменяем tg x = t. и решаем квадратное уравнение относительно t.
10t^2 - 3t - 4 = 0
t1 = (3-13)\ 20 = - 0.5
t2 = 0.8
подставляем полученные значения вместо tgx=t
tgx= - 0.5
x = arctg (-0.5) + Пи*n, n принадлежит Z
x = - arctg 0.5 = ПИ*n? n принадлежит Z
tg x = 0.8
x = arctg 0.8 + Пи*n, n принадлежит Z
S = 4
Объяснение:
Найдём уравнение прямой, проходящей через точки (-3; 0) и (-1; 3).
(х + 3)/(-1 + 3) = (у -0)/(3 - 0)
3(х + 3) = 2у
у = 1,5х + 4,5
Найдём точки пересечения этой прямой с осью Ох
у = 0;
1,5х + 4,5 = 0
х = -3
парабола у = 3х касается оси Ох в точке х = 0.
Найдём точки пересечения параболы у = 3х² и прямой у = 1,5х + 4,5
3х² = 1,5х + 4,5
3х² - 1,5х - 4,5 = 0
2х² - х - 3 = 0
D = 1 + 24 = 25
x1 = (1 - 5)/4 = -1
x2 = (1 + 5)/4 = 1.5
Изобразим графики, заданные уравнениями параболы и прямой.
Смотри рисунок на прикреплённом файле.
Очевидно, что фигура, заключённая между параболой, наклонной прямой и осью Ох, представляет собой криволинейный треугольник. Причем левая половина этого треугольника ограничена наклонной прямой и осью Ох, а правая половина - параболой и осью Ох. Соответственно, и интегралов будет два