Катя сидит на расстоянии 2,9 метров от точки опоры качелей A, а Коля — на расстоянии 0,9 м. Сколько весит Коля, если Катя весит 144 Н, а качели находятся в равновесии?
Если всё-таки дан периметр прямоугольника, то: периметр прямоугольника P=2(a+b) площадь прямоугольника S=a*b. Составим систему уравнений 2(a+b)=22 a+b=11 a=11-b a*b=24 a*b=24 (11-b)*b=24
11b-b²=24 -b²+11b-24=0 D=11²-4*(-1)*(-24)=121-96=25 b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3 Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см. Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
X - скорость катера в стоячей воде y - скорость течения реки или скорость плота x+y - скорость катера по течению x-y - скорость катера против течения 90/(x+y) - время катера на путь по течению 90/(x-y) - время катера на путь против течения 30/y - время плота до встречи 90/(x+y)+60/(x-y) - время катера до встречи Имеем систему 90/(x+y)+90/(x-y)=12,5 90/(x+y)+60/(x-y)=30/y или первое уравнение оставляем и приводим к общему знаменателю, а второе уравнение получаем вычитанием второго из первого. Новая система: 90(x-y+x+y)=12,5(x-y)(x+y) 30/(x-y)=12,5-30/y или 30/(x-y)+30/y=12,5; 30(y+x-y)=12,5y(x-y)
180x=12,5(x-y)(x+y) 30x=12,5y(x-y) Делим первое уравнение на 2-ое: 6=(x+y)/y⇒6y=x+y⇒x=5y подставляем во 2-е уравнение вместо x его значение 5y: 30*5y=12,5y(5y-y)⇒4y*12,5=150; 50y=150⇒y=3; x=15 Скорость катера в стоячей воде - 15 скорость течения - 3
периметр прямоугольника P=2(a+b)
площадь прямоугольника S=a*b.
Составим систему уравнений
2(a+b)=22 a+b=11 a=11-b
a*b=24 a*b=24 (11-b)*b=24
11b-b²=24
-b²+11b-24=0
D=11²-4*(-1)*(-24)=121-96=25
b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3
Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см.
Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
ответ: стороны прямоугольника 8 см и 3 см.
y - скорость течения реки или скорость плота
x+y - скорость катера по течению
x-y - скорость катера против течения
90/(x+y) - время катера на путь по течению
90/(x-y) - время катера на путь против течения
30/y - время плота до встречи
90/(x+y)+60/(x-y) - время катера до встречи
Имеем систему
90/(x+y)+90/(x-y)=12,5
90/(x+y)+60/(x-y)=30/y
или первое уравнение оставляем и приводим к общему знаменателю, а второе уравнение получаем вычитанием второго из первого.
Новая система:
90(x-y+x+y)=12,5(x-y)(x+y)
30/(x-y)=12,5-30/y или 30/(x-y)+30/y=12,5; 30(y+x-y)=12,5y(x-y)
180x=12,5(x-y)(x+y)
30x=12,5y(x-y)
Делим первое уравнение на 2-ое: 6=(x+y)/y⇒6y=x+y⇒x=5y
подставляем во 2-е уравнение вместо x его значение 5y:
30*5y=12,5y(5y-y)⇒4y*12,5=150; 50y=150⇒y=3; x=15
Скорость катера в стоячей воде - 15
скорость течения - 3